
©2018 IFAC. This is the author’s version of a work that was accepted for publication in the 6th IFAC Conference on Nonlinear Model
Predictive Control. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and
other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted
for publication. A definitive version was subsequently published in DOI: 10.1016/j.ifacol.2018.11.063

A Survey of the Implementation of Linear
Model Predictive Control on FPGAs ?

Ian McInerney ∗ George A. Constantinides ∗

Eric C. Kerrigan ∗,∗∗

∗ Department of Electrical & Electronic Engineering, Imperial College
London, SW7 2AZ London, UK, email:

{i.mcinerney17,g.constantinides,e.kerrigan}@imperial.ac.uk
∗∗ Department of Aeronautics, Imperial College London, SW7 2AZ

London, UK

Abstract: Over the past 20 years, great strides have been made in the real-time implementation
of linear MPC on FPGA devices. Starting from initial work, which demonstrated the benefits of
embedding linear MPC onto FPGAs, recent work has shown sampling rates of more than 1 MHz
are possible with FPGA-based implementations. This work surveys FPGA implementations
of linear MPC, with a focus on the computational architecture. This includes the choice of
number representation, the parallelizations exploited and the memory architecture. We discuss
the transferability of those design choices to the FPGA implementation of nonlinear MPC, and
provide some future research directions related to the implementation of MPC on FPGAs.

Keywords: linear MPC, embedded optimization, Field Programmable Gate Array (FPGA)

1. INTRODUCTION

Model predictive control (MPC) has grown increasingly
popular over the past two decades, branching out from
the chemical industry into other application areas. For
instance, it has been applied to the control of spacecraft
(Hartley and Maciejowski, 2013), aircraft (Hartley et al.,
2014), and Atomic Force Microscopes (Jerez et al., 2013).
These applications require very fast sampling rates, such
as the Atomic Force Microscope, which needs control rates
greater than 1 MHz for good closed loop performance.

Methods for solving MPC problems in real-time are
grouped into two distinct sets: explicit MPC and implicit
MPC. In explicit MPC, the state space is divided into
sections, and the optimal control problem is solved for an
initial condition in each section at design-time (Bemporad
et al., 2002). At run-time, the process then consists of
looking-up the appropriate feedback law in memory and
applying the resulting input. While explicit MPC allows
for very fast sampling rates, the memory usage can grow
exponentially with the problem size, making it practical
only for small problems.

In implicit MPC, the optimal control problem is solved
at run-time. This consists of solving the optimization
problem at each sampling instant, then applying the first
computed control input to the system. This approach
requires more run-time computation, since it utilizes an
entire optimization solver instead of a lookup table search.
Two main routes have been explored for implementing
implicit linear MPC: CPU code generation and custom-
designed hardware. CPU code generation is designed in

? The support of the EPSRC Centre for Doctoral Training in High
Performance Embedded and Distributed Systems (HiPEDS, Grant
Reference EP/L016796/1) is gratefully acknowledged.

an architecture-agnostic manner, and focuses on the gen-
eration of source code that is tailored to the optimization
problem presented. The custom hardware architectures
have been specifically designed with a focus on improving
the performance of the algorithm.

To develop and implement these custom hardware archi-
tectures, designers utilize Field Programmable Gate Ar-
rays (FPGAs). These devices contain an array of recon-
figurable hardware cells, and an associated routing fabric
to move signals between the cells (Constantinides, 2009).
The advantage of FPGAs over CPUs stems from their
ability to let designers create: custom number represen-
tations, specialized hardware for operators, and duplicate
computational elements to parallelize computations.

A discussion of the computational architectures that can
be applied in real-time control systems can be found in
Kerrigan et al. (2015), but it focuses on a high-level
description. This work describes the custom computational
architectures for MPC that have been reported in the
literature. Specifically, we focus on those which utilize
FPGAs to implement implicit MPC with linear systems
and a quadratic cost function.

Many FPGA implementations exist, with a summary of
their characteristics provided in Table 1. We survey the
architectural choices made in these implementations; for
a survey of the optimization methods see Ferreau et al.
(2017). We also discuss future research directions for both
linear and nonlinear MPC on FPGA systems.

In Sections 2 and 3, the MPC formulations are presented
and the three main algorithm classes are presented. In
Section 4, number representation for MPC is discussed. In
Section 5, the parallelizations at both an algorithmic and
computational level are presented. In Section 6, memory

https://doi.org/10.1016/j.ifacol.2018.11.063


Table 1. FPGA implementation details for selected linear MPC solvers

Implementation Source
QP
Form1 Algorithm2 Number

Format3
Design
Entry

Clock
Frequency

(MHz)

Matrix
Storage4

QP Size5 Solver Time

Ling et al. (2006) D IP/CHOL float32 Handel-C 20 BRAM 3/0/60 23.7 ms6

Ling et al. (2008) D IP/CHOL float32 Handel-C 25 - 3/0/52 9.1 ms
Vouzis et al. (2009) D Newton LNS Verilog 50 BRAM 2/0/4 688 µs

Basterretxea and Benkrid (2011) D IP/CHOL fixed AccelDSP 20 BRAM 3/0/6 120 µs
Wills et al. (2011) D IP/CG float16.6 VHDL 70 - 12/0/24 <200 µs
Yang et al. (2012) D ASM float/fixed Verilog 100 BRAM 3/0/6 20 µs
Wills et al. (2012) D ASM float7 VHDL 70 BRAM 12/0/24 <30 µs
Peyrl et al. (2014) D FGM fixed27.25 VHDL 120 - 15/0/30 0.49 µs
Jerez et al. (2014) D FGM fixed VHDL 400/230 BRAM 40/0/80 0.53/0.91 µs

Rubagotti et al. (2016) D DGP fixed32.16 Simulink 100 DiRAM 20/0/208 239 µs

Liu et al. (2014) S IP/CHOL float32 VHDL 200 BRAM 300/-/600 4 ms
Hartley et al. (2014) S IP/MINRES float32 VHDL 250 BRAM 377/-/408 <12 ms
Jerez et al. (2014) S ADMM fixed VHDL 400/230 BRAM 216/-/172 4.9/8.52 µs
Dang et al. (2015) S ADMM fixed32.17 - - - 120/80/250 215 ms6

Shukla et al. (2017) S AMA float32 C 100 BRAM 384/-/- 900 µs6

Zhang et al. (2017) S ADMM float32 VHDL 340 BRAM 204/-/300 30.1 µs

- Indicates data that was not reported
1 D - Condensed (Dense) formulation, S - Uncondensed (Sparse) formulation
2 ASM - Active-Set Method, IP - Interior-Point, FGM - Fast Gradient Method, ADMM - Alternating Direction Method of Multipliers,

AMA - Alternating Minimization Algorithm, CHOL - Cholesky, CG - Conjugate Gradient, MINRES - Minimum Residual
3 float32 - IEEE-754 single precision, LNS - Logarithmic Number System
4 BRAM - Block RAM, DiRAM - Distributed RAM
5 Decision Variables/Equality Constraints/Inequality Constraints
6 Fully sequential implementation

architectures for MPC are presented. Finally, in Sections 7
and 8, trends in the implementation of linear MPC are pre-
sented, followed by a discussion of how these architectures
can be extended in both linear and nonlinear MPC.

2. MPC PROBLEM FORMULATION

Implementations of linear MPC on FPGAs mostly use the
constrained LQR formulation for Linear Time-Invariant
(LTI) systems of the form

min
u,x
‖xN‖2P +

N−1∑
k=0

(
‖xk‖2Q + ‖uk‖2R

)
(1a)

s.t. xk+1 = Axk +Buk, k = 0, . . . N − 1 (1b)

Fuk ≤ cu, k = 0, . . . N − 1 (1c)

Dxk ≤ cx, k = 1, . . . N (1d)

for a horizon of length N where xk and uk are the
states and inputs respectively at time sample k, A and B
are the discrete-time state transition and input matrices
respectively, and x0 is a given estimate of the current state.
The matrices F and D are the stage constraint matrices for
the system states and inputs respectively, and the vectors
cu and cx are the upper bounds for the stage constraints.
The matrices Q,R, P are the weighting matrices for the
system states, system inputs and final states respectively;
when Q,R, P � 0, the optimization problem (1) is convex.

The actual implementation of this optimization problem
can be formulated in multiple ways. The sparse formula-
tion contains both the state and the inputs as optimization
variables, and leaves the system dynamics (1b) as equality
constraints. In this formulation, all of the matrices in (1)
are banded and sparse, and the number of non-zero ele-
ments in them grows linearly with the horizon length.

The condensed formulation removes the state variables xk
from the optimization problem by rewriting them as a
function of only the inputs uk. This allows the optimiza-
tion problem to be transformed into a least-squares prob-
lem for the input variables, which moves the dynamics
from the equality constraint (1b) to the Hessian matrix of
the cost function (Maciejowski, 2002, §3). Though using
the condensed form removes the equality constraints and
reduces the number of optimization variables needed, this
produces a dense Hessian matrix where the number of non-
zero entries grows quadratically with the horizon length.

3. QUADRATIC PROGRAMMING ALGORITHMS

To solve (1), FPGA implementations have utilized one of
three main convex optimization algorithm classes: Interior-
Point Methods, Active-Set Methods, or First-Order Meth-
ods. Each algorithm has several variants, and many have
been implemented on FPGAs, as illustrated in Figure 1.

Interior-Point Methods (IPMs) were some of the original
methods applied to solve (1) by Ling et al. (2006) and
subsequent authors. In IPM, the optimal solution of (1) is
found by solving the nonlinear KKT system of equations.
This system is solved using an iterative Newton’s method,
with each iteration consisting of three main steps:

(1) Update/linearize the KKT system.
(2) Solve the linear KKT system for a step direction.
(3) Update the current guess with the step direction.

The main computational burden is solving the linear
system in Step 2. Work by Rao et al. (1998) has shown
that exploiting the structure of the matrices arising in the
LTI problem leads to faster and more scalable solvers.



Predictor-Corrector
Basterretxea and Benkrid (2011)

Liu et al. (2014)

Barrier
Wills et al. (2011)
Mills et al. (2012)

PDIP
Ling et al. (2006, 2008)

Jerez et al. (2010, 2012c)
Hartley et al. (2012, 2014)

Hartley and Maciejowski (2013)

Interior-Point
Methods

Primal
Yang et al. (2012)

Dual
Knagge et al. (2009)
Wills et al. (2012)

Active-Set
Methods

DGP
Rubagotti et al. (2016)

FGM
Boéchat et al. (2013)

Jerez et al. (2014)
Peyrl et al. (2014)

AMA
Shukla et al. (2017)

ADMM
Jerez et al. (2014)
Dang et al. (2015)
Zhang et al. (2017)

First-Order
Methods

Fig. 1. Taxonomy of the various optimization algorithm implementations discussed in this paper.

The second type of algorithm that has been implemented
on FPGA systems is the Active-Set Method (ASM). In
ASM, the algorithm finds the optimal point by solving a
sequence of equality-constrained subproblems to locate the
set of inequality constraints that are active at optimality.
In each iteration, inequality constraints are converted to
equality constraints based upon whether they have been
violated in the previous iteration.

A comparison between IPM and ASM on FPGAs was
carried out by by Lau et al. (2009). The results show that
for small problem sizes, ASM will take fewer iterations
compared to the fixed cost of the IPM. However, the
number of interior-point iterations required stays constant
as the problem size grows, while the iterations required
for ASM tends to grow approximately linearly with the
number of optimization variables and constraints. They
determined that for larger problems, IPM is better to use.

More recently, FPGA implementations have used first-
order methods such as Nesterov’s Fast Gradient Method
(FGM), or the Alternating Direction Method of Multi-
pliers (ADMM). These methods utilize only first-order
information (e.g. the gradient) in their computations, and
generally have three main steps:

(1) Compute a search direction.
(2) Compute the step size and apply the search direction.
(3) Project onto the feasible set.

The main linear algebra operation in these methods is a
matrix-vector multiplication in Step 1 (as opposed to the
linear system solver in IPM or ASM). However, the pro-
jection operation in Step 3 can become computationally
complex depending on the feasible set. If the constraint
sets (1c), (1d) are purely upper and lower bounds, then
the projection operation is a simple variable saturation.
However, if F 6= I or D 6= I then the projection operation
may require the solution of its own QP.

4. NUMBER REPRESENTATION

An important feature of FPGAs compared to CPUs is
their support for non-standard data types in the calcula-
tions. This allows the designer to create hardware tailored
to different word lengths in fixed-point, and different man-
tissa and exponent sizes in floating-point. These custom

data types reduce the amount of device area consumed by
the individual computational resources, allowing for more
parallelism (Constantinides, 2009). The choice of data type
introduces two types of errors: computational errors and
representation errors.

4.1 Computational Errors

Computational errors manifest themselves in three ways:

• Overflow: The magnitude of the requested number is
larger than the maximum representable number.

• Underflow: The magnitude of the requested number
is smaller than the smallest representable number.

• Round-off: Errors that occur because the number
requires more fractional places than available.

The optimization algorithms discussed in Section 3 were
developed using either infinite precision or the standard
data types (e.g. IEEE-754 floating-point). Changing the
algorithms to another data type will introduce different
errors in the computation. For instance, changing from
floating-point to fixed-point introduces different round-off
errors in the computations. To guarantee the algorithm
works with the new data types, new proofs of convergence
and stability are needed, such as those for the fast gradient
method in Jerez et al. (2013) and ADMM in Jerez et al.
(2014).

An additional concern for fixed-point implementations is
overflow errors. In general, bounding values in algorithms
is difficult due to the nonlinear nature of the computations.
However, bounds do exist for some methods, such as the
fast gradient method (Jerez et al., 2013), ADMM (Dang
et al., 2015) and dual gradient projection (Patrinos et al.,
2013). These bounds then lead to rules for the sizing of
the integer and fractional components in fixed-point to
guarantee no overflow errors occur inside the algorithms.

Other algorithms, such as IPM, do not have bounds for
every variable in the computation. Instead, bounds on
variables in parts of the algorithm have been created. For
instance, when the Minimum Residual (MINRES) solver
is used for Step 2 of the IPM, Jerez et al. (2012a) present a
scaling method that guarantees all signals in the MINRES
solver will stay below precomputed bounds, allowing for a
fixed-point implementation of MINRES.



4.2 Representation Errors

In addition to examining the effect of the data type on
the algorithm’s convergence, designers must be conscious
of the effect this has on the optimization problem itself.
For instance, the choice of the representation could cause
the optimization problem to lose convexity or feasibility
with respect to the original problem.

For MPC specifically, experiments by Longo et al. (2014)
show that the discretization is affected by the data type.
Their experiments show that the usual shift-form dis-
cretization method performs very poorly when used inside
an interior-point method with small data types (e.g. 5-
bit floating-point). Instead, they propose using the delta-
domain discretization method. This then provides closed-
loop control using 5-bit floating-point that is equivalent to
the control using double precision (52-bit) floating-point.

5. PARALLELIZATION OPPORTUNITIES

Opportunities for parallelization occur at two distinct
levels: algorithmic and computational. Algorithmic par-
allelizations are those inherent in the structure of the
algorithm, while computational level parallizations exist
at the level of the arithmetic computations.

5.1 Algorithmic Level

In this work, algorithmic level parallelization refers to the
ability to parallelize the overall algorithm steps inside a
single iteration. The existence of these parallelizations is
highly dependent upon the structure of the problem, and
of the algorithm itself.

In IPM implementations on FPGAs (such as Jerez et al.
(2012b); Liu et al. (2014); Hartley et al. (2014)), the
main computational bottleneck is located inside step 2
(the linear system solver), so attempting to parallelize the
computations in Steps 1 and 3 provided no noticeable
performance increase. Therefore, these implementations
left Steps 1 and 3 with minimal parallelization and fo-
cused the development effort on the computational level
parallelization inside Step 2.

More recent FPGA implementations have examined the
parallelizations possible in first-order methods, such as
FGM or ADMM. Work by Jerez et al. (2014) demonstrates
that, given an appropriate projection operation, there is no
data-dependence between the optimization variables in an
iteration. This allows for the processing of each variable
in parallel by duplicating the computational component
containing a Marix-Vector Multiplier (MVM), projection
block, and associated glue logic.

This parallelization is highly dependent upon the pro-
jection operator though, and the reported architectures
utilize box constraints on the variables to allow for this ex-
ploitation. The introduction of constraints such as Cx ≤ d
will introduce data dependencies in the projection, and
make parallelization highly dependent upon the structure
of the matrix C. Adding soft constraints to the MPC
problem was done in Jerez et al. (2014), but to maximize
the parallelization in the ADMM implementation there
had to be one slack variable per soft constraint.

5.2 Computational Level

Many of the parallelizations that have been exploited
in the FPGA implementations have been at the compu-
tational level. This level consists of the low-level linear
algebra routines that compose the algorithm, such as the
linear system solvers, matrix factorizations and matrix-
vector multiplies.

An initial survey of parallelizing the linear system solvers
was done by Lopes et al. (2009), where they explored
the implementation of the Conjugate Gradient method
using deeply pipelined inner-product units. Subsequent
implementations by Jerez et al. (2012b) and Hartley et al.
(2014) explored the implementation of the MINRES solver
to speed-up Step 2 inside of the interior-point method by
parallelizing and pipelining the operations.

Parallelization of the MVM was used in nearly every
implementation, but there were two main methods used:
column-sweep and row-sweep. Column-sweep parallelism
was implemented in Rubagotti et al. (2016), and consisted
of a multiply-accumulate (MAC) module for each row of
the matrix. This processes a column at a time, and will
not produce a complete result until n clock cycles for an
m× n matrix.

Row-sweep parallelism was implemented in Wills et al.
(2011) and Jerez et al. (2014), and consists of multiple
units that compute the dot products between rows of the
matrix and the vector. There is one multiplier per vector
element, followed by an adder tree to combine all the
results. This adder tree can have registers inserted between
levels to reduce the critical path and allow for pipelining
of different operations. A fully pipelined implementation
(registers between every level) of a single MVM unit can
produce the complete result in m+ dlog2 ne clock cycles.

6. MEMORY ORGANIZATION

The architecture of the memory system consists of two
main components: locality and the data storage pattern.
Locality refers to how close the memory cells are to the
computational elements, while the data storage pattern is
how the data/matrices are arranged inside the memory
cells.

6.1 Locality

There are three major memory regions that are available
for FPGA implementations: Distributed RAM (DiRAM),
Block RAM (BRAM), and off-chip memory. In the MPC
implementations examined, none of them utilized off-chip
memory, and all but one utilized the BRAM to store the
main coefficient matrix (the Hessian), and the DiRAM for
various computational products.

The remaining implementation (Rubagotti et al., 2016)
stores the Hessian matrix in DiRAM to have high locality
with the MVM elements. For the active-set implementa-
tion done by Wills et al. (2012), they experimented with
placing the Hessian matrix in the DiRAM and the BRAM.
They reported results that show switching from BRAM
to DiRAM will almost double the resource usage of the
FPGA.



6.2 Storage Pattern

The storage pattern that an implementation utilizes is
driven by both the choice of the MPC problem formulation
and the computational architecture. When designing the
storage pattern in relation to the computational archi-
tecture, the primary objective is to present the data to
the computational units with the smallest latency. For
instance, for the column-sweep MVM implementation in
Rubagotti et al. (2016), the Hessian matrix is broken
into rows for storage at each MAC (each row in separate
memory areas), allowing for each MAC to be fed with a
new coefficient simultaneously. Alternatively, the work of
Jerez et al. (2012b) places each column of the Hessian in
different BRAM units to efficiently feed the coefficients to
the column-sweep MVM unit.

The chosen MPC problem formulation plays a key role
in the scaling of the storage pattern as problem sizes
change. For instance, in the FPGA implementations using
the condensed formulation with a full Hessian matrix, the
memory usage of the Hessian scales quadratically with the
horizon length.

Alternatively, choosing the sparse formulation allows for
the usage of the Compressed Diagonal Storage (CDS)
method to represent the Hessian matrix. As detailed
in Boland and Constantinides (2010), CDS exploits the
banded structure of an m × n matrix to only store the
diagonals that contain values (those inside the bandwidth
r). This is accomplished by turning each diagonal of the
original matrix into a column of the CDS matrix, which
then has dimensions m × r. The CDS matrix then grows
linearly with the horizon length. The CDS storage method
was utilized in Jerez et al. (2012b), where it decreased
memory usage by at least an order of magnitude.

Further structure in the sparse LTI MPC problem can
be exploited to realize gains of over 75% compared to
the normal CDS implementation. Specifically, Jerez et al.
(2012b) shows that the CDS matrix for the LTI case
contains many identical rows (with mostly zeros and ones).
By storing only one copy of that row and then mapping the
appropriate memory addresses to it when needed, memory
use can be reduced. Additional savings can be found by
exploiting the block structure of the matrix, so only one
copy of a block is stored and then accessed through an
appropriately designed memory system.

7. OVERALL TRENDS

The implementation of linear MPC on FPGAs has seen
substantial improvement over the past 15 years, with a
diverse set of implementations that have pushed the com-
putational time to sub-microsecond ranges. By examining
the implementation details of many different solvers (pro-
vided in Table 1), several patterns emerge.

The first is that the recent speed-up in solver times has
been accompanied by a switch to first-order methods, such
as FGM for a condensed problem and ADMM for the
sparse problem. This switch shows an order of magnitude
difference in the number of clock cycles required for the
computation, as can be seen in the comparison presented
in Figure 2.

L
in

g
et

a
l.

(2
0
0
6
)

-
IP

/
C

H
O

L

L
in

g
et

a
l.

(2
0
0
8
)

-
IP

/
C

H
O

L

V
o
u

zi
s

et
a
l.

(2
0
0
9
)

-
N

ew
to

n

B
a
st

er
re

tx
ea

et
a
l.

(2
0
1
1
)

-
IP

/
C

H
O

L

W
il
ls

et
a
l.

(2
0
1
1
)

-
IP

/
C

G

Y
a
n

g
et

a
l.

(2
0
1
2
)

-
A

S
M

W
il
ls

et
a
l.

(2
0
1
2
)

-
A

S
M

P
ey

rl
et

a
l.

(2
0
1
4
)

-
F

G
M

J
er

ez
et

a
l.

(2
0
1
4
)

-
F

G
M

R
u

b
a
g
o
tt

i
et

a
l.

(2
0
1
6
)

-
D

G
P

101

103

105

107

C
lo

ck
C

y
cl

es

Dense Solvers

L
iu

et
a
l.

(2
0
1
4
)

-
IP

/
C

H
O

L

H
a
rt

le
y

et
a
l.

(2
0
1
4
)

-
IP

/
M

IN
R

E
S

J
er

ez
et

a
l.

(2
0
1
4
)

-
A

D
M

M

S
h
u

k
la

et
a
l.

(2
0
1
7
)

-
A

M
A

Z
h

a
n

g
et

a
l.

(2
0
1
7
)

-
A

D
M

M

Sparse Solvers

Overall, per Variable, per Inequality

Fig. 2. Cycles required for the computations. Per variable
(inequality) values are the total clock cycles divided
by the number of variables (inequality constraints).

Another pattern that emerges is that, unlike many initial
implementations that were based on a high-level language,
such as Simulink or Handel-C, recent implementations
have been coded directly in a low-level Register-Transfer
Level (RTL) language, such as VHDL or Verilog.

8. FUTURE DIRECTIONS

8.1 Continuing with Linear MPC

As identified earlier, many of the recent results that have
produced large reductions in solver time have utilized RTL
languages. Implementations at this level can be difficult
for control designers to work with, and may not be widely
accepted. To encourage acceptance by the control designer,
a simplified design-flow is needed, similar to that provided
by the many code generation utilities for CPUs.

Initial work done by Shukla et al. (2017) has led to the
development of the tool SPLIT, which uses MATLAB
to generate C code tailored to the Vivado High Level
Synthesis (HLS) toolset. Other work conducted by Lucia
et al. (2018) utilized existing CPU code generation tools
with FPGA HLS tools to explore the software-hardware
co-design space. The reported results indicate that the
software-hardware co-design space is very rich, and that
care should be taken when choosing design parameters
(e.g. level of parallelization).



Automatically creating MPC implementations that achieve
optimality in this space is a new research area that has at-
tracted attention. Work by Khusainov et al. (2016, 2017a)
has started to explore the automated co-design of MPC
implementations, but a lot of work remains in the identi-
fication of the design criterion, and also the optimization
algorithms to employ.

8.2 Moving to Nonlinear MPC

Implementing nonlinear MPC in real-time systems is an-
other young research field that has risen to prominence
in recent years. A survey of the algorithms that can be
used and their associated details can be found in Gros
et al. (2016). Work in Peyrl et al. (2015) and Khusainov
et al. (2017b) has started to explore the implementation
of these algorithms on an FPGA system. While several
pieces of the linear MPC implementation carry over, there
are many unanswered questions remaining.

When implementing a nonlinear MPC tracking/regulator
problem, much of the computational level parallelism (e.g.
MVM architectures) can still be utilized, and even some
of the algorithmic parallelism carries over (e.g. separability
across variables in FGM). However, there are new parts in
the algorithms (e.g. condensing and linearization) where
the parallelization opportunities and scalability have not
yet been explored and understood in an FPGA framework.

Additionally, the behavior of nonlinear MPC algorithms in
arbitrary-precision number representations is important.
As shown in the linear case, the use of the standard shift-
form discretization can produce poor performance with
small arbitrary-precision number representations. There
are many other discretization methods that can be used
with nonlinear MPC though, so the performance of the
various methods under arbitrary-precision should be stud-
ied and understood to reveal any possible benefits or
caveats.

Another important question centers on memory structure
and usage. While the nonlinear sparse formulation can still
utilize the CDS structure, the amount of constant/similar
data in the matrix decreases drastically. Additionally, cur-
rent trends in nonlinear implementation suggest lineariz-
ing on a CPU then passing data to the FPGA. This
introduces new questions about how to best structure the
memory and its transactions to have both computational
efficiency in the control algorithm and efficient transac-
tions in the matrix update stage.

9. CONCLUSIONS

Overall, a diverse set of literature exists on the implemen-
tation of linear MPC on FPGAs. Recent implementations
have shown that with the appropriate parallelizations at
the computational and algorithmic level, solvers complet-
ing in less than 1µs are possible using first-order methods.

The knowledge gained from the linear implementations can
be carried forth into the nonlinear realm, but it is not
sufficient. New research needs to be conducted into how
other parts of the algorithms scale/parallelize, how number
representation affects the algorithm and how memory
architectures should be designed.

REFERENCES

Basterretxea, K. and Benkrid, K. (2011). Embedded
high-speed Model Predictive Controller on a FPGA.
In Proceedings of the 2011 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), 327–335. San
Diego, CA.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E.N. (2002). The explicit linear quadratic regulator for
constrained systems. Automatica, 38(1), 3–20.

Boéchat, M.A., Liu, J., Peyrl, H., Zanarini, A., and Bessel-
mann, T. (2013). An Architecture for Solving Quadratic
Programs with the Fast Gradient Method on a Field
Programmable Gate Array. In 2013 21st Mediterranean
Conference on Control and Automation (MED), 1557–
1562. Platanias-Chania, Crete, Greece.

Boland, D. and Constantinides, G.A. (2010). Optimising
Memory Bandwidth Use for Matrix-Vector Multiplica-
tion in Iterative Methods. In Proceedings of the Inter-
national Symposium on Applied Reconfigurable Comput-
ing, 169–181. Bangkok, Thailand.

Constantinides, G.A. (2009). Tutorial Paper: Parallel Ar-
chitectures for Model Predictive Control. In Proceedings
of the 2009 European Control Conference (ECC), 138–
143. Budapest, Hungary.

Dang, T.V., Ling, K.V., and Maciejowski, J.M. (2015).
Embedded ADMM-based QP solver for MPC with poly-
topic constraints. In 2015 European Control Conference
(ECC), 3446–3451. Linz, Austria.

Ferreau, H.J., Almér, S., Verschueren, R., Diehl, M., Frick,
D., Domahidi, A., Jerez, J.L., Stathopoulos, G., and
Jones, C. (2017). Embedded Optimization Methods for
Industrial Automatic Control. In Proceedings of the 20th
IFAC World Congress, 13194–13209. Toulouse, France.

Gros, S., Zanon, M., Quirynen, R., Bemporad, A., and
Diehl, M. (2016). From linear to nonlinear MPC: bridg-
ing the gap via the real-time iteration. International
Journal of Control, 1–19.

Hartley, E.N., Jerez, J.L., Suardi, A., Maciejowski, J.M.,
Kerrigan, E.C., and Constantinides, G.A. (2014). Pre-
dictive Control Using an FPGA With Application to
Aircraft Control. IEEE Transactions on Control Sys-
tems Technology, 22(3), 1006–1017.

Hartley, E.N. and Maciejowski, J.M. (2013). Predictive
control for spacecraft rendezvous in an elliptical orbit
using an FPGA. In 2013 European Control Conference
(ECC), 1359–1364. Zurich.

Jerez, J.L., Constantinides, G.A., and Kerrigan, E.C.
(2012a). Towards a fixed point QP solver for predictive
control. In 51st IEEE Conference on Decision and
Control (CDC), 675–680. Maui, HI.

Jerez, J.L., Goulart, P.J., Richter, S., Constantinides,
G.A., Kerrigan, E.C., and Morari, M. (2013). Embedded
Predictive Control on an FPGA using the Fast Gradient
Method. In 2013 European Control Conference (ECC),
3614–3620. Zurich.

Jerez, J.L., Goulart, P.J., Richter, S., Constantinides,
G.A., Kerrigan, E.C., and Morari, M. (2014). Embedded
Online Optimization for Model Predictive Control at
Megahertz Rates. IEEE Transactions on Automatic
Control, 59(12), 3238–3251.

Jerez, J.L., Ling, K.V., Constantinides, G.A., and Kerri-
gan, E.C. (2012b). Model predictive control for deeply



pipelined field-programmable gate array implementa-
tion: algorithms and circuitry. IET Control Theory and
Applications, 6(8), 1029 – 1041.

Kerrigan, E.C., Constantinides, G.A., Suardi, A., Picciau,
A., and Khusainov, B. (2015). Computer Architec-
tures to Close the Loop in Real-time Optimization. In
54th IEEE Conference on Decision and Control (CDC),
4597–4611. Osaka, Japan.

Khusainov, B., Kerrigan, E.C., and Constantinides, G.A.
(2016). Multi-objective Co-design for model predictive
control with an FPGA. In 2016 European Control
Conference (ECC), 110–115. IEEE, Aalborg, Denmark.

Khusainov, B., Kerrigan, E.C., and Constantinides, G.A.
(2017a). Automatic Software and Computing Hardware
Co-design for Predictive Control. arXiv preprint, 1–10.

Khusainov, B., Kerrigan, E.C., Suardi, A., and Constan-
tinides, G.A. (2017b). Nonlinear predictive control on
a heterogeneous computing platform. In Proceedings of
the 20th IFAC World Congress. Toulouse, France.

Knagge, G., Wills, A., Mills, A., and Ninness, B. (2009).
ASIC and FPGA implementation strategies for Model
Predictive Control. In Proceedings of the 2009 European
Control Conference (ECC), 144–149. Budapest, Hun-
gary.

Lau, M.S.K., Yue, S.P., Ling, K.V., and Maciejowski, J.M.
(2009). A Comparison of Interior Point and Active Set
Methods for FPGA Implementation of Model Predictive
Control. In Proceedings of the 2009 European Control
Conference (ECC), 3–8. Budapest, Hungary.

Ling, K.V., Yue, S.P., and Maciejowski, J.M. (2006). A
FPGA Implementation of Model Predictive Control. In
2006 American Control Conference (ACC), 1930–1935.
Minneapolis, MN, USA.

Ling, K.V., Wu, B.F., and Maciejowski, J. (2008). Embed-
ded Model Predictive Control (MPC) using a FPGA. In
Proceedings of the 17th IFAC World Congress, 15250–
15255. Seoul, Korea.

Liu, J., Peyrl, H., Burg, A., and Constantinides, G.A.
(2014). FPGA implementation of an interior point
method for high-speed model predictive control. In 2014
24th International Conference on Field Programmable
Logic and Applications (FPL), 1–8. Montreal, QC,
Canada.

Longo, S., Kerrigan, E.C., and Constantinides, G.A.
(2014). Constrained LQR for low-precision data rep-
resentation. Automatica, 50(1), 162–168.

Lopes, A.R., Shahzad, A., Constantinides, G.A., and Ker-
rigan, E.C. (2009). More Flops or More Precision? Accu-
racy Parameterizable Linear Equation Solvers for Model
Predictive Control. In Proceedings of the 17th IEEE
Symposium on Field Programmable Custom Computing
Machines (FCCM ’09), 209–216. Napa, CA.

Lucia, S., Navarro, D., Lucia, O., Zometa, P., and Find-
eisen, R. (2018). Optimized FPGA Implementation of
Model Predictive Control for Embedded Systems Using

High Level Synthesis Tool. IEEE Transactions on In-
dustrial Informatics, 14(1), 137–145.

Maciejowski, J.M. (2002). Predictive Control with Con-
straints. Pearson Education Limited, Essex, UK.

Mills, A., Wills, A.G., Weller, S.R., and Ninness, B. (2012).
Implementation of linear model predictive control using
a field-programmable gate array. IET Control Theory
and Applications, 6(8), 1042–1054.

Patrinos, P., Guiggiani, A., and Bemporad, A. (2013).
Fixed-point dual gradient projection for embedded
model predictive control. In 2013 European Control
Conference (ECC). Zurich, Switzerland.

Peyrl, H., Ferreau, H.J., and Kouzoupis, D. (2015). A
Hybrid Hardware Implementation for Nonlinear Model
Predictive Control. In 5th IFAC Conference on Nonlin-
ear Model Predictive Control, 87–93. Seville, Spain.

Peyrl, H., Zanarini, A., Besselmann, T., Liu, J., and
Boéchat, M.A. (2014). Parallel implementations of the
fast gradient method for high-speed MPC. Control
Engineering Practice, 33, 22–34.

Rao, C.V., Wright, S.J., and Rawlings, J.B. (1998). Ap-
plication of Interior-Point Methods to Model Predictive
Control. Journal of Optimization Theory and Applica-
tions, 99(3), 723–757.

Rubagotti, M., Patrinos, P., Guiggiani, A., and Bemporad,
A. (2016). Real-time model predictive control based on
dual gradient projection: Theory and fixed-point FPGA
implementation. International Journal of Robust and
Nonlinear Control.

Shukla, H.A., Khusainov, B., Kerrigan, E.C., and Jones,
C.N. (2017). Software and Hardware Code Generation
for Predictive Control Using Splitting Methods. In
Proceedings of the 20th IFAC World Congress, 14386–
14391. IFAC, Toulouse, France.

Vouzis, P.D., Bleris, L.G., Arnold, M.G., and Kothare,
M.V. (2009). A system-on-a-chip implementation for
embedded real-time model predictive control. IEEE
Transactions on Control Systems Technology, 17(5),
1006–1017.

Wills, A., Mills, A., and Ninness, B. (2011). FPGA
implementation of an interior-point solution for linear
model predictive control. In Proceedings of the 18th
IFAC World Congress, 14527–14532. Milano, Italy.

Wills, A.G., Knagge, G., and Ninness, B. (2012). Fast
Linear Model Predictive Control Via Custom Integrated
Circuit Architecture. IEEE Transactions on Control
Systems Technology, 20(1), 59–71.

Yang, N., Li, D., Zhang, J., and Xi, Y. (2012). Model pre-
dictive controller design and implementation on FPGA
with application to motor servo system. Control Engi-
neering Practice, 20(11), 1229–1235.

Zhang, P., Zambreno, J., and Jones, P.H. (2017). An
Embedded Scalable Linear Model Predictive Hardware-
based Controller using ADMM. In 2017 IEEE 28th In-
ternational Conference on Application-specific Systems,
Architectures and Processors (ASAP). Seattle, WA.


	Introduction
	MPC Problem Formulation
	Quadratic Programming Algorithms
	Number Representation
	Computational Errors
	Representation Errors

	Parallelization Opportunities
	Algorithmic Level
	Computational Level

	Memory Organization
	Locality
	Storage Pattern

	Overall Trends
	Future Directions
	Continuing with Linear MPC
	Moving to Nonlinear MPC

	Conclusions

