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Modeling Round-off Error in the Fast Gradient Method for Predictive
Control

Ian McInerney, Eric C. Kerrigan, and George A. Constantinides

Abstract— We present a method for determining the smallest
precision required to have algorithmic stability of an imple-
mentation of the Fast Gradient Method (FGM) when solving
a linear Model Predictive Control (MPC) problem in fixed-
point arithmetic. We derive two models for the round-off error
present in fixed-point arithmetic. The first is a generic model
with no assumptions on the predicted system or weight matrices.
The second is a parametric model that exploits the Toeplitz
structure of the MPC problem for a Schur-stable system. We
also propose a metric for measuring the amount of round-off
error the FGM iteration can tolerate before becoming unstable.
This metric is combined with the round-off error models to
compute the minimum number of fractional bits needed for
the fixed-point data type. Using these models, we show that
exploiting the MPC problem structure nearly halves the number
of fractional bits needed to implement an example problem. We
show that this results in significant decreases in resource usage,
computational energy and execution time for an implementation
on a Field Programmable Gate Array.

I. INTRODUCTION

Model Predictive Control (MPC) has played a large role
in the rapid growth of cyber-physical systems by facilitating
controllers that provide operational and safety guarantees.
With the introduction of the internet of things, MPC is
expected to play a similar role [1], but with control units
that are smaller, cheaper and lower-power than today. Past
results have demonstrated that first-order methods, such as
the Fast Gradient Method (FGM), are well suited for these
resource-constrained devices, since they require only simple
computations (vector addition and matrix-vector multiplica-
tion), while having a fast solution time (on the order of
micro-seconds) [2].

Field Programmable Gate Arrays (FPGAs) and resource-
constrained embedded devices, such as microcontrollers,
perform better with a fixed-point number representation than
with floating-point due to the lack of an efficient floating-
point computational unit. For this reason, many of the MPC
algorithms such as FGM, dual gradient projection and proxi-
mal Newton have been implemented in fixed-point arithmetic
— they have been analyzed to ensure algorithmic stability
and that no values in the computations will be larger than
the maximum representable value of the chosen data type.

Initial analysis for the FGM was done in [2], which
proposed two design steps when choosing the parameters
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of the fixed-point data type. First, optimization problems
are solved to compute the largest possible magnitude of the
numbers in the computation. Second, a heuristic that uses the
problem data chooses the precision so that the algorithm is
stable in fixed-point. This work replaces the second design
step with a new framework for computing the data type
required to have stability of the FGM iteration in fixed-point.

As part of this framework, we present a new measure
that we call the rounding stability margin, based on the
pseudospectrum of the MPC Quadratic Program’s (QP), to
quantify how much round-off error can be experienced by
the QP’s Hessian before the FGM becomes unstable. We
then present two models for the round-off error introduced
by moving the Hessian into a fixed-point representation. The
first is a generic model that can be applied to any MPC
problem formulated as a QP, but depends on the length of the
prediction horizon. The second is a structure-exploiting para-
metric model for the Constrained Linear Quadratic Regulator
problem that requires the predicted system to be Schur-stable,
but provides a horizon-independent error approximation.

These round-off error models are then combined with
the rounding stability margin to compute the number of
fractional bits required for algorithmic stability. We also
examine how the rounding stability margin and the number
of fractional bits needed changes as the cost function (e.g. the
weighting matrices) is scaled. We demonstrate that using the
structure-exploiting parametric model reduces the number of
fractional bits needed by 30–45%, and reduces the hardware
usage and solution time by up to 77% and 25%, respectively,
for an FPGA implementation of FGM.

A. Notation

Let A′ and A∗ represent the transpose and conjugate
transpose of the matrix A, respectively. The set of all
eigenvalues of the matrix A is represented by λ(A). The
matrix norm of A is represented by ‖A‖p, where p = 1, 2,∞
are the induced norms and ‖·‖max is the largest absolute-value
of the elements in the matrix. The H∞ norm of a complex-
valued function Ps(·) is given by ‖Ps‖H∞ . For a matrix A,
its fixed-point representation is given by Â, and the block on
its ith diagonal is given by Ai. The set T is defined to be the
unit circle in the complex plane, i.e. T := {z ∈ C | |z| = 1}.

II. PRELIMINARIES

A. MPC Problem Formulation

In this work we focus on the input constrained LQR
problem with a horizon of length N , which can be written
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as the quadratic program

min
u,x

1

2
x′NPxN +

1

2

N−1∑
k=0

(x′kQxk + u′kRuk) (1a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1

x0 = x̄0

(1b)

Euk ≤ cu, k = 0, . . . , N − 1 (1c)

where xk ∈ Rn and uk ∈ Rm are the states and inputs at
time k, respectively, and x̄0 ∈ Rn is the current measured
system state. The matrices A ∈ Rn×n and B ∈ Rn×m
describe the discrete-time system Gs. The stage constraints
for the inputs are composed of the matrix E ∈ Rj×m and the
vector cu ∈ Rj . The matrices Q = Q′ ∈ Rn×n, R = R′ ∈
Rm×m, P = P ′ ∈ Rn×n are the weighting matrices for the
system states, inputs, and final states respectively, and are
chosen such that Q � 0, R � 0 and P � 0.

We use the condensed MPC problem formed by removing
the state variables from (1) to leave only the control inputs
u:=

[
u′0 u

′
1 · · · u′N−1

]′
in the optimization problem

min
u

1

2
u′Hu+ x̄′0J

′u (2a)

s.t. Gu ≤ g (2b)

with the matrices described in [3, Appendix A].
In this paper, the numerical examples use the 2-input, 4-

state dynamical system from [4] with N = 20 and weight
matrices Q = diag(0.1, 0.2, 0.3, 0.4), R = diag(0.01, 0.02)
and P the solution of the discrete-time Lyapunov equation
A′PA+Q=P .

B. Fixed-Point Number Representation

To store a fractional number, the fixed-point representation
uses a fixed number of bits (the word length), which is
divided into two segments: integer bits and fraction bits. The
integer bits store the part of the number to the left of the radix
point, while the fractional bits store the part to the right. The
number of bits in each section is fixed at design-time, forcing
a fixed range and precision on the numbers represented.

Any values larger than the number of integer bits will
overflow, and have the information to the left of the integer
portion lost. Any values with fractional components smaller
than the precision of the number will have those parts
rounded to the precision of the fixed-point number, with the
difference between the represented number and the actual
number termed the round-off error. The common rounding
modes available for fixed-point numbers are shown in Table I
along with their largest possible round-off error.

C. Fast Gradient Method

The Fast Gradient Method is an algorithm originally
developed by Nesterov for solving a strictly convex opti-
mization problem, and was subsequently adapted to solve the
condensed CLQR problem (2) in [5]. This algorithm is an
accelerated gradient descent method with the inequality con-
straints (2b) handled through a projection operator on u. To
aid in its implementation, usually only upper/lower bounds

TABLE I: Rounding modes in fixed-point arithmetic data
types and their maximum round-off error.

Description Maximum Round-off Error with
f fractional bits

Round to +∞ εf = 2−f

Round to 0 (truncation to 0) εf = 2−f for negative numbers
εf = −2−f for positive numbers

Round to −∞ (truncation) εf = −2−f

Round to ∞ εf = −2−f for negative numbers
εf = 2−f for positive numbers

Round towards the nearest
value (convergent rounding)

εf = ±2−(f+1)

are used in FGM on embedded platforms so that saturation
can be used instead of projection.

Prior work has shown how to select the number of
integer bits required to prevent overflow [2, Prop. 1], and
also proposed the following necessary requirement to have
stability of the FGM iteration in the presence of round-off
errors.

Requirement 1 ([2, §IV-D]): For the Fast Gradient
Method to be stable in fixed-point arithmetic, it is necessary
(but not sufficient) for the fixed-point Hessian Ĥ to have all
its eigenvalues in the open interval (0, 1).

D. Matrix Pseudospectrum

In this work we will utilize a property of a matrix called
its pseudospectrum.

Definition 1 (Pseudospectrum [6, §2]): Let A ∈ Cn×n
and ε > 0 arbitrary. The ε-pseudospectrum λε(A) of A is
the set of λ̃ ∈ C given by:

1.
∥∥∥(λ̃I −A)−1

∥∥∥
p
> 1

ε , (or λmin(λ̃−A) < ε if p = 2).

2. λ̃ ∈ λ(A+ E) for some E ∈ Cn×n with ‖E‖p < ε.
Note that statements 1 and 2 in Definition 1 are equivalent.

Statement 1 presents the pseudospectrum as being the subset
of the complex plane where the norm of the resolvent
of A is greater than ε−1. Alternatively, statement 2 presents
the pseudospectrum as the subset of the complex plane
containing the eigenvalues of A when A is perturbed by a
matrix E with a given norm less than ε.

The pseudospectrum is a useful computational tool for
describing the behavior of linear operators, especially those
that are nonnormal. In this work though we focus on normal
operators (since H is normal), which means that the ε-
pseudospectrum can be interpreted as the set of numbers
that are ε-close to an eigenvalue of A. This can be seen in
Figure 1, where the inverse-resolvent of H is plotted.

III. CHOOSING THE FRACTIONAL PRECISION

When the Fast Gradient Method is implemented using a
fixed-point data format, care must be taken to ensure that
Requirement 1 is satisfied. The placement of the eigenvalues
of Ĥ is determined by both the number of integer bits i
(through overflow), and also by the number of fractional
bits f (through loss of precision). We will focus only on
the fractional length and assume the integer length is chosen
using [2, Prop. 1] to prevent overflow.
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Fig. 1: The inverse of the resolvent of H when λ̃ is
constrained to the real line. The ε-pseudospectra of H are
the level-sets taken at the value ε.
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Fig. 2: Extremal values of λ(Ĥ) with N = 50.

The effect of the fractional length on the spectrum of the
Hessian Ĥ can be seen in Figure 2 for four of the rounding
modes available in fixed-point arithmetic. In this example,
using round to zero/nearest gives a Hessian that is always
Schur-stable but becomes indefinite for f < 6. If round
to ±∞ is used, it is both unstable and indefinite in low
precision. This shows that the rounding choice makes a large
impact on the error between Ĥ and H , and must be factored
into any analysis to determine the required bit length.

To analyze how the rounding affects the matrix, we model
the round-off error as an additive matrix disturbance to H:

Ĥ = H + E. (3)

The values contained in the round-off matrix E in (3) will
depend on the rounding mode chosen, but the magnitude of
the values will always be less than the εf given in Table I.

To quantify the effect that the round-off error has on the
spectrum of Ĥ , we present a metric called the rounding

stability margin.
Definition 2 (Rounding stability margin): Let Ĥ=H+E

with ‖E‖2 = β and λ(H) ∈ (0, 1). The rounding stability
margin η is the smallest value of β that causes the eigenval-
ues of Ĥ to leave the interval (0, 1).

This margin represents the largest possible disturbance
matrix that can be added to H before causing Requirement 1
to be violated. The margin can be calculated for symmetric
matrices using the pseudospectrum of H as follows.

Lemma 1: Let H = H ′ be a matrix with eigenvalues
λ(H) ∈ (0, 1). The rounding stability margin η of H is

η(H) = min
{
‖(−H)−1‖−1

2 , ‖(I −H)−1‖−1
2

}
.

Proof: We begin by noting that H is symmetric,
meaning its spectrum is composed of only real eigenvalues
and that its ε-pseudospectrum will be an interval on the
real line. By statement 2 of Definition 1, the eigenvalues
of H perturbed by E with ‖E‖2 < ε will leave the interval
(0, 1) when either 0 or 1 is contained inside λε(A). The
largest allowable value of ε can then be computed using
statement 1 of Definition 1 by evaluating the resolvent of
H at the points 0 and 1, and computing 1/ε at each point.

The result in Lemma 1 holds for any symmetric matrix H ,
so it can be used to find the rounding stability margin for
the Hessian of (2) with any system or weight matrices.

A. Generic Rounding Model

We now present a framework for computing the necessary
number of fractional bits for the FGM under a generic round-
off error model that encompasses all of the rounding methods
described in Table I. The basis for this model is that every
element in H will experience an error of at most ±εf , so
the worst-case perturbation matrix would then have entries
of ±εf .

Definition 3 (Generic round-off error model): Let εf be
the maximum round-off error created when a value is con-
verted into a fixed-point representation with f fractional bits.
Define Eg ∈ Rk×k to be the worst-case component-wise
round-off error matrix with ±εf in every entry, i.e.

Eg :=

±εf ±εf . . .
±εf ±εf . . .

...
...

. . .

 . (4)

Since each element of (4) is the same, modulo the sign,
the matrix 1/∞-norms can be computed exactly and then be
used to upper-bound the 2-norm of Eg as follows.

Lemma 2: Let Eg ∈ Rk×k be the round-off error matrix
from Definition 3 and let εf be the maximum round-off error
possible with the rounding method. It follows that

‖Eg‖2 ≤ ‖Eg‖∞ = |εf |k.
Proof: Recall that the matrix infinity (or one) norm is

the largest absolute row (or column) sum of the matrix. Since
the 1/∞ norms take the absolute value of the entries before
summing them, the sign of the rounding error is irrelevant.
Since H is symmetric, this gives ‖Eg‖1 = ‖Eg‖∞ = |εf |k.
Then, note that ‖Eg‖2 ≤

√
‖Eg‖1‖Eg‖∞ [7, Fact 9.8.23],

which means that ‖Eg‖2 ≤ ‖Eg‖∞.



To find the number of fractional bits needed to satisfy
Requirement 1, we must find the number of bits needed
to make ‖Eg‖2 < η. This can be done in closed-form, as
follows.

Theorem 1: Let f ∈ N+ be the number of fractional
bits in the fixed-point number representation, and εf the
maximum round-off error a number may experience through
rounding in that representation. If H has a rounding stability
margin of η, then the number of fractional bits sufficient to
guarantee that λ(Ĥ) ∈ (0, 1) is

f =

{⌈
− log2

(
η
mN

)⌉
− 1 if using round to nearest,⌈

− log2

(
η
mN

)⌉
otherwise.

Proof: Using statement 2 of Definition 1 and the
concept of the rounding stability margin introduced in Def-
inition 2, we can say that we need ‖Eg‖2 ≤ η to guarantee
that λ(Ĥ) ∈ (0, 1). Using Lemma 2 and the fact that H is of
dimension mN × mN , we can transform that requirement
into |εf |mN ≤ η. Turning the inequality into an equality
and isolating εf then gives |εf | = η

mN . Using the fact that
|εf | ∈ {2−f , 2−(f+1)} depending on the rounding mode, we
can substitute for εf and simplify to find f .

The closed-form expressions for f given in Theorem 1
hold for any rounding mode, and any system/weight matrix
combination. Note that all rounding modes have the same
fractional length with the exception of round to nearest,
where 1 less bit is required.

The value of f from Theorem 1 is dependent upon both
the horizon length and the system input dimension, and is
monotonically increasing in both, as shown for the horizon
length in Figure 3. This increase in the bound is caused
by the monotonic increase in ‖Eg‖∞ when the number of
fraction bits is held constant and the horizon length increases.
This means that in general the fraction length computed for
a specific horizon can be used with a shorter horizon (e.g.
in a decreasing-horizon controller), but may not be sufficient
for longer horizons.

B. Parametric Rounding Model

The generic model in Section III-A is conservative for
some rounding modes when applied to FGM with long
horizons, especially round to nearest and round to zero. To
reduce the conservatism of the error estimation, we introduce
a parametric model for the round-off error experienced by H
that incorporates knowledge of both the decay of terms in H
and its Toeplitz structure. This model will only be valid in
two rounding modes: round to nearest and round to zero.

A matrix is Toeplitz if it contains the same value down
the entire length of each diagonal. Matrices of this type can
be linked to a complex-valued function, called its matrix
symbol, that has its Fourier coefficients given by the elements
on the diagonals (see [8] for an overview). Recent work in [3]
has shown that the matrix symbol for H is composed of the
transfer function matrix for Gs and the weighting matrices,
and provides horizon-independent analysis for Schur-stable
systems. We can use this Toeplitz structure to then compute
a horizon-independent η, as shown in Lemma 3.
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Fig. 3: The minimum number of fractional bits required for a
given horizon length when using the generic rounding model
from Theorem 1. The background shows the log of the bound
for ‖Eg‖2 computed using Lemma 2.
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Fig. 4: Value of ‖Hi‖ as the diagonal number grows.

Lemma 3: Let H be the Hessian from (2) with eigenval-
ues λ(H) ∈ (0, 1), Gs be Schur-stable, PH the matrix symbol
of H , and P be the solution of the discrete-time Lyapunov
equation. Then the rounding stability margin η is

η(H) = min
{∥∥(−PH)−1

∥∥−1

H∞
,
∥∥(Im − PH)−1

∥∥−1

H∞

}
.

Proof: Since the resolvent in Definition 1 can be found
using λmin(λ̃−H), we can use the results of [3] to replace
H in Lemma 1 with its matrix symbol PH .

We further exploit the Toeplitz structure of H by noting
that the diagonal blocks, Hi for diagonal i ∈ Z, are given
by

Hi =


B′(Ai)′PB if i > 0,

B′PB +R if i = 0,

B′PA|i|B if i < 0,

(5)

with Hi = H ′−i. We define diagonals as positive (or nega-
tive) if they are in the upper-triangular (or lower-triangular)
region. If A corresponds to the state transition matrix of a
Schur-stable system, then as the diagonal number i increases,
the block Hi tends to 0, as shown in Figure 4.

The idea behind the parametric model is to exploit this
decay and switch from modeling the worst-case round-off
error to instead modeling the actual round-off error after a
certain diagonal number. We now present a formal definition
for this model.



Definition 4 (Parametric round-off error model): Let
Ti ∈ Rl×l be the block on the ith diagonal of the Toeplitz
matrix T that has the property that limi→∞‖Ti‖max = 0.
Let εf be the round-off error associated with the conversion
to fixed-point representation using either round to nearest
or round to zero, and k to be the diagonal beyond which all
blocks in fixed-point representation T̂i are 0, i.e.

k := min
i

{
i ∈ N+ | ‖Tj‖max < εf ,∀|j| ≥ i, j ∈ Z

}
.

Define the parametric round-off error matrix as

Ep := EG + ET ,

where EG is a matrix of bandwidth k − 1 with Eg as its
blocks, i.e.

(EG)i :=

{
Eg if i < k,

0 otherwise,

and ET is composed of the diagonal components of T that
are after diagonal k, i.e.

(ET )i :=

{
Ti if |i| ≥ k,
0 otherwise.

Note that in this model, the value of k is inclusive of the
first diagonal block which becomes 0, and k 6= 0, since this
would imply that the entire matrix has been rounded to 0.

The matrix ET in Definition 4 is Toeplitz, so its spectrum
can be found using system-theoretic techniques similar to
those in [3]. This then allows for the computation of the
round-off error for the Hessian of (2) as follows.

Theorem 2: Let εf be the maximum round-off error when
using either round to zero or round to nearest to convert H
into fixed-point representation. Let η be the rounding stability
margin of H from Lemma 3, and k be from Definition 4. If
the parametric rounding model is used with a Schur-stable
system Gs with P the solution to the discrete-time Lyapunov
equation, then the fraction bit lengths sufficient for Ĥ to
satisfy Requirement 1 also satisfies the inequality

|εf |m(2k − 1) + 2‖PH̄(k, ·)‖H∞ < η,

where

PH̄(n, z) := zGP (z)−B′PPn(z)B ∀z ∈ T,

GP :=

{
x+ = Ax+Bu
y = B′Px

,

Pn(z) :=

n−1∑
i=0

Aiz−i ∀z ∈ T.

Proof: To guarantee that Requirement 1 holds, we need
to find when ‖Ep‖2 < η. First apply the sub-additive prop-
erty of the matrix norm to get ‖EG‖2+‖ET ‖2 < η. The ma-
trix EG is banded, with non-zero blocks on diagonals {−(k−
1), . . . , 0, . . . , k− 1}. This gives ‖EG‖2 ≤ |εf |m(2k− 1),
since there are 2k−1 diagonals containing blocks of Eg with
dimension m×m.

Since ET is a Toeplitz matrix, we can construct the Fourier
series of the components of ET as

PH̄ =

∞∑
i=k

B′PAiBz−i +

∞∑
i=k

B′(Ai)′PBzi. (6)

5 10 15 20
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 5: The matrix norms from Theorem 2, with round to
nearest (RN), and round to zero (RZ).

Adding and subtracting the first k terms of the summations
then allows (6) to simplify to

PH̄ = B′P
(
(I − z−1A)−1 − Pk(z)

)
B

+B′
(
(I − zA′)−1 − Pk(z)∗

)
PB. (7)

The first term in (7) then can be simplifed further to

zGP (z)−B′PPn(z)B. (8)

Note that the two terms in (7) are the conjugate transpose
of each other. This means that when the H∞ norm of PH̄ is
taken, it will simply be twice the H∞ norm of (8). We can
then use the H∞ norm of PH̄ as a size-independent upper
bound for ‖ET ‖2.

To compute the fractional bit length from the inequality
in Theorem 2, we do the following:

1) Compute ‖Hi‖2 using (5) for various values of i.
2) Iterate through each fraction length to determine if the

inequality in Theorem 2 holds.
The result of these calculations can be seen in Figure 5

for the example problem. In this example EG dominates ET ,
so the worst-case round-off error from the non-zero banded
component dominates the error caused by truncating the tail
of H . The minimum number of fractional bits needed to
satisfy Requirement 1 can be seen from the intersection of
‖Ep‖2 with η in Figure 5. It is also of note that the horizon
length was not used in any of the calculations in Theorem 2,
meaning the computed bit length is valid for any horizon.

IV. NUMERICAL EXPERIMENTS

From Theorems 1 and 2, we can see a correlation between
the problem data and the required data type size. To examine
this, we performed experiments where Q was scaled by
α and R was held constant, with the results reported in
Figures 6 and 7. Note that for α > 10 the eigenvalues of H
leave (0, 1), so we introduce a scaling factor c = 1

0.9λmax(H)
to scale the matrices H and J in (2a) to bring the eigenvalues
of H into (0, 1) before performing the analysis.

It can be seen that for small values of α, the number of
fraction bits needed is small, with the structure-exploitation
in Theorem 2 producing a saving of nearly 40% compared
to the generic model from Theorem 1. Additionally, once α
becomes large and the scale factor c is needed, the number
of integer bits decreases. This decrease in integer bits offsets
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Fig. 6: The effect of scaling the cost function on the rounding
margin and fixed-point representation. Q was scaled by α
while R was held constant. The finite horizon used was N =
20.
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Fig. 7: Percent error of fixed-point versus double-precision
floating-point implementations of FGM using round to zero
and the fractional lengths from Theorem 2.

the increase in fractional bits leaving the overall number of
bits nearly the same as the number needed for small α.

Reducing the fractional length to the minimum needed
can lead to a large decrease in the required resources, power
requirements, and solution times for FPGA implementations
compared with simply choosing either floating-point or a
larger fixed-point data type to get stability. This can be
seen in Table II, where we present results for an FPGA
implementation of the FGM using ProtoIP [9] targeting
the Xilinx Zynq 7020 with a clock speed of 100MHz. An
implementation with f = 12 uses 77% fewer memory

TABLE II: Resource usage for FGM implemented using
ProtoIP [9] on a Zynq 7020 at 100MHz with N = 20, i = 5.

Fractional
Length

Logic Resources1 Power
(mW)

Solve Time
(µs)LUT FF DSP BRAM

f=12 947 768 4 2 20 532.17
f=16 1,136 912 4 2 25 612.17
f=21 887 1,033 8 8 43 701.77
f=26 993 1,237 12 9 48 701.77
float2 2,161 1,545 5 14 51 982.17

1 LUT = Lookup Tables, FF = Flip Flops, DSP = Digital Signal Processing
cores, BRAM = Block RAM memory units

2 Single-precision floating-point representation

blocks, 33% fewer Digital Signal Processing (DSP) com-
putation blocks, and 25% less time when compared with
an implementation for f = 26, and 85% fewer memory
blocks taking 45% less time when compared to a single-
precision floating-point implementation. This lower precision
can lead to convergence to a suboptimal solution though,
with experiments showing that using the minimum data type
can lead to as much as a 15% increase in the cost and
degraded closed-loop performance, as shown in Figure 7.

V. CONCLUSIONS

In this paper we developed two methods to size the data
types in FGM to satisfy Requirement 1, then demonstrated
the resource savings that can be achieved by using the
smallest data type needed. Future work could explore the
effect of the data type size on the suboptimality of the
solution and stability of the closed-loop system to create
data type sizing rules that provide closed-loop performance
guarantees.
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