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ABSTRACT
Convex optimization is at the heart of many performance-critical
applications across a wide range of domains. Although many high-
performance hardware accelerators have been developed for spe-
cific optimization problems in the past, designing such accelerator
is a challenging task and the resulting computing architecture is
often so specific to the targeted application that they can hardly be
reused even in a related application within the same domain. To ac-
celerate general-purpose optimization solvers that must operate on
diverse user input during run time, an ideal hardware solver should
be able to adapt to the provided optimization problem dynamically
while achieving high performance and power-efficiency. In this
work, a hardware-accelerated general-purpose quadratic program
solver, called RSQP, with reconfigurable functional units and data
path that facilitate problem-specific customization is presented.
RSQP uses a string-based encoding to describe the problem struc-
ture with fine granularity. Based on this encoding, functional units
and datapath customized to the sparsity pattern of the problem are
created by solving a dictionary-based lossless string compression
problem and a mixed integer linear program respectively. RSQP
has been integrated to accelerate the general-purpose quadratic
programming solver OSQP and has been tested using an exten-
sive benchmark with 120 optimization problems from 6 application
domains. Through architectural customization, RSQP achieves up
to 7× performance improvement over its baseline generic design.
Furthermore, when compared with a CPU and a GPU-accelerated
implementation, RSQP achieves up to 31.2× and 6.9× end-to-end
speedup on these benchmark programs, respectively. Finally, the
FPGA accelerator operates at up to 6.6× lower dynamic power
consumption and up to 22.7× higher power efficiency over the
GPU implementation, making it an attractive solution for power-
conscious datacenter applications.
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1 INTRODUCTION
Convex optimization is at the heart of many important problems
across a wide range of application domains. Specifically, convex
quadratic programs (QPs) can be found in many real-world ap-
plication domains including control engineering [1, 12, 25], finan-
cial trading/investment planning [5, 6, 23], data assimilation (e.g.
least-squares, lasso and ridge regression) [7] and the optimization
subproblems solved when using the Sequential Quadratic Program-
ming (SQP) method for solving more general nonlinear or non-
convex optimization problems [16]. QPs can also be integrated as
individual layers within deep neural networks. [3] and [2] have
demonstrated that QP-based layers are capable of capturing more
complex data dependencies compared to traditional convolutional
and fully-connected layers.

A convex quadratic program with 𝑛 decision variables and𝑚
constraints can be written as

minimize (1/2)𝑥𝑇 𝑃𝑥 + 𝑞𝑇 𝑥 (1a)

subject to 𝑙 ≤ 𝐴𝑥 ≤ 𝑢, (1b)

where 𝑥 ∈ R𝑛 is the vector of decision variables, the positive semi-
definite matrix 𝑃 ∈ S𝑛+ and vector 𝑞 ∈ R𝑛 define the objective, and
the matrix𝐴 ∈ R𝑚×𝑛 and vectors 𝑙, 𝑢 ∈ R𝑚 describe the constraints.
The QP problem is prevalent in many domains because it can han-
dle a wide range of optimization problems with quadratic objective
functions and linear constraints. Quadratic objective functions are
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popular because they can accurately capture second-order effects
and provide a good approximation to non-linear functions. Linear
constraints, on the other hand, are easy to work with and widely ap-
plicable in many domains. While all QP problems can be expressed
in the form of (1), each individual optimization problem can differ in
the structure of the matrices 𝑃 and 𝐴, defined here as the locations
of the non-zero values in the matrices. This means that if the QP (1)
is solved using an algorithm that uses sparse matrix operations, the
requirements to efficiently accelerate the core operations such as
sparse matrix-vector multiplication (SpMV) will be different for ev-
ery problem. For this reason, applications that demand the highest
performance in solving their QP routines have typically relied on
tailor-made hardware accelerators that are optimized for a particu-
lar application [8, 14, 17, 19, 20, 26]. Unfortunately, the design of
these hardware accelerators usually requires advanced knowledge
of the problem domain, and the resulting hardware designs are
not readily transferable between different problem types. Instead,
the ideal general-purpose optimization solver should be able to
automatically produce a high-quality accelerator architecture by
analyzing the user-provided problem without requiring major user
interaction and domain expertise.

In this work, we present RSQP, an FPGA-based reconfigurable
quadratic programming solver that can customize its architecture to
the target problem automatically for improved acceleration. RSQP
provides end-to-end acceleration of the Preconditioned Conjugate
Gradient (PCG) methods within the general-purpose QP solver
OSQP [30]. Given a QP in the form of (1), RSQP uses a string-
based encoding to represent the sparsity structure of the matrices
and vectors. This encoding is then used to generate customized
functional units and datapaths for the user’s optimization problem
by solving a dictionary-based lossless string compression problem
and a mixed integer linear programming problem, respectively.

RSQP was implemented on FPGA platforms designed for data
center applications. Extensive experiments were conducted using
120 problems across 6 applications with dimensions ranging from
less than 102 to over 106 number of non-zeros (nnz) automati-
cally generated from the OSQP benchmark set. With architectural
customization, RSQP achieves 1.4 to 7.0 times improvement in
end-to-end execution speed over the baseline reference design.
When compared to the original CPU implementation with MKL
acceleration and a GPU-accelerated implementation of OSQP [29],
RSQP achieved up to 31.2 and 6.9 times end-to-end speedup, respec-
tively. Moreover, while the GPU consumed 44W to 126W across
the benchmark, the FPGA accelerator operated at around 19W in
all cases, representing up to 22.7× improvement in power-efficiency
across a wide range of problems.

Although customizing the accelerator architecture to a particular
QP problem incurs a lengthy hardware implementation process due
to the vendor CAD tools, such overhead can be amortized when
the resulting accelerator is reused to solve different instances of
the same optimization problem with the same sparsity structure.
For example, up to 120 000 QP problems with the same sparsity
structure would need to be solved with different sets of trading
strategy dependent parameters to perform backtesting of portfolio
optimization over 2 years of historical data [28]. This translates to
over 300 hours of run time even if it took only 1 s to solve each

QP problem, amortizing the 2 to 5 hours of hardware CAD tools
overhead.

RSQP is integrated as part of the OSQP solver, and has been
tested with CVXPY [11]. It can readily be deployed to acceler-
ate real-world quadratic programming problems either by using
a baseline architecture running on the FPGA or by generating a
problem-specific architecture that provides additional performance
and power-efficiency improvements. As such, we consider the main
contributions of our work to be the following:
• we present a first-of-its-kind general-purpose FPGA-accelerated
QP solver that is suitable for deployment in datacenters to
accelerate real-world problems;
• we propose an architectural customization framework to
adapt the accelerator’s datapath and data packing scheme
to the structure of the user input that results in substantial
performance and power-efficiency improvements; and
• we demonstrate through extensive experiments the superior
performance and power-efficiency of the proposed design
over existing CPU and GPU accelerated implementations
across a wide range of problems.

The rest of the paper is organized as follows. In Section 2 we
present the necessary background on the OSQP algorithm and
the preconditioned conjugate gradient method. We then present
the overall architecture of RSQP and the proposed architectural
customization methods in Sections 3 and 4, respectively. Experi-
mental results are shown in Section 5, followed by a discussion
of the related work in Section 6. Finally, we conclude our work in
Section 7.

2 BACKGROUND
This work builds on the OSQP solver [30], which is a first-order
method for solving convex quadratic programs based on the Alter-
nating Direction Method of Multipliers (ADMM) technique. In this
section, we present a description of the algorithm implemented in
the OSQP solver, and the linear system solvers that are used inside
OSQP and RSQP.

2.1 The OSQP algorithm
In OSQP, problem (1) is solved by introducing a new decision vari-
able 𝑧 ∈ R𝑚 that converts the inequality constraint (1b) into the
pair of equality/inequality constraints𝐴𝑥 = 𝑧 and 𝑙 ≤ 𝑧 ≤ 𝑢 instead.
Then, two new sets of auxiliary variables, 𝑥 ∈ R𝑛 and 𝑧 ∈ R𝑚 , are
introduced. The method used by OSQP for solving (1) is shown in
Algorithm 1, and performs two main computations during each
iteration: (i) the solution of an equality constrained QP by solving
the linear system (2), and (ii) the Euclidean projection, Π(·), onto
the inequality constraint set.

The first step in each iteration of OSQP is the solution of the
equality constrained QP

minimize (1/2)𝑥𝑇 𝑃𝑥 + 𝑞𝑇 𝑥 + (𝜎/2)∥𝑥 − 𝑥𝑘 ∥22

+ (𝜌/2)∥𝑧 − 𝑧𝑘 + 𝜌−1𝑦𝑘 ∥22
subject to 𝐴𝑥 = 𝑧,

where 𝑦, 𝜈 ∈ R𝑚 are the Lagrange multipliers associated with
the constraints, 𝜎 > 0, 𝜌 > 0 are the step-size parameters, and
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Algorithm 1 OSQP algorithm
1: given:

initial values 𝑥0, 𝑧0, 𝑦0 and parameters 𝜌 > 0,
𝜎 > 0, 𝛼 ∈ (0, 2)

2: repeat
3: solve[

𝑃 + 𝜎𝐼 𝐴𝑇

𝐴 −𝜌−1𝐼

] [
𝑥𝑘+1

𝜈𝑘+1

]
=

[
𝜎𝑥𝑘 − 𝑞

𝑧𝑘 − 𝜌−1𝑦𝑘
]

(2)

4: 𝑧𝑘+1 ← 𝑧𝑘 + 𝜌−1 (𝜈𝑘+1 − 𝑦𝑘 )
5: 𝑥𝑘+1 ← 𝛼𝑥𝑘+1 + (1 − 𝛼)𝑥𝑘
6: 𝑧𝑘+1 ← Π(𝛼𝑧𝑘+1 + (1 − 𝛼)𝑧𝑘 + 𝜌−1𝑦𝑘 )
7: 𝑦𝑘+1 ← 𝑦𝑘 + 𝜌 (𝛼𝑧𝑘+1 + (1 − 𝛼)𝑧𝑘 − 𝑧𝑘+1)
8: until the termination criterion is satisfied

𝛼 ∈ (0, 2) is the relaxation parameter (by default, OSQP sets 𝛼 = 1.6
and 𝜎 = 10−6). This QP can be efficiently solved by forming the
Karush-Kuhn-Tucker (KKT) matrix of the optimality conditions,
and then applying a linear system solver to the KKT system (2).
Next, the additional decision variables 𝑧 are projected into the
inequality constraints using the Euclidean projection operation,
which for problem (1) is simply the element-wise projection into
[𝑙, 𝑢], giving Π(𝑧) B min(max(𝑧, 𝑙), 𝑢).

2.2 Solving the KKT system
The core component of the OSQP solver is a linear system solver
to find the solution of the KKT system (2) at each iteration, with
the remaining steps using only straightforward vector operations.
Solving the KKT system (2) requires the majority of the time in an
OSQP iteration, and can comprise over 95 % of the total computation
time (Figure 8).

The KKT system (2) is an indefinite linear system, and OSQP
solves it using a direct 𝐿𝐷𝐿𝑇 factorization method designed for
sparse linear systems. In this method, the KKT matrix is first factor-
ized into a lower triangular matrix 𝐿 and a diagonal matrix 𝐷 , and
then the solution is found using a forward-backward substitution.
OSQP implements this as a three-stage process, with an initial sym-
bolic factorization to determine the sparsity pattern and structure
of the 𝐿 matrix performed before the iterations begin, and then each
iteration performing a numerical factorization to actually compute
𝐿 and𝐷 , followed by the forward-backward substitution to compute
the final solution. If the values of 𝜎 and 𝜌 don’t change between
iterations, the numerical factorization can be reused in the next
iteration, reducing the solution of (2) to only the forward-backward
substitution step. Updating 𝜌 between iterations can improve the
rate of convergence, so by default OSQP will occasionally update
𝜌 , necessitating the recomputation of the numerical factorization
in the following iteration.

An alternative way to solve the KKT system (2) is to reduce it
into the symmetric linear system

(𝑃 + 𝜎𝐼 + 𝜌𝐴𝑇𝐴)𝑥𝑘+1 = 𝜎𝑥𝑘 − 𝑞 +𝐴𝑇 (𝜌𝑧𝑘 − 𝑦𝑘 ), (3)

and then solve for 𝑥𝑘+1. For convenience, we let 𝐾 B (𝑃 + 𝜎𝐼 +
𝜌𝐴𝑇𝐴) be the matrix from (3), and refer to 𝐾 as the reduced KKT
matrix.

Algorithm 2 Preconditioned Conjugate Gradient
1: given:

initial values 𝑥0 and preconditioner𝑀
𝐾 B 𝑃 + 𝜎𝐼 + 𝜌𝐴𝑇𝐴
𝑏 B 𝜎𝑥𝑘 − 𝑞 +𝐴𝑇 (𝜌𝑧𝑘 − 𝑦𝑘 )
𝑟0 B 𝐾𝑥0 − 𝑏, 𝑑0 B 𝑀−1𝑟0, 𝑝0 B −𝑑0

2: repeat
3: 𝜆𝑖+1 ← (𝑟 𝑖 )𝑇𝑑𝑖

(𝑝𝑖 )𝑇𝐾𝑝𝑖
4: 𝑥𝑖+1 ← 𝑥𝑖 + 𝜆𝑖𝑝𝑖
5: 𝑟 𝑖+1 ← 𝑟 𝑖 + 𝜆𝑖𝐾𝑝𝑖
6: 𝑑𝑖+1 ← 𝑀−1𝑟 𝑖+1

7: 𝜇𝑖+1 ← (𝑟 𝑖+1 )𝑇𝑑𝑖+1
(𝑟 𝑖 )𝑇𝑑𝑖

8: 𝑝𝑖+1 ← −𝑑𝑖+1 + 𝜇𝑖+1𝑝𝑖
9: 𝑖 ← 𝑖 + 1
10: until | |𝑟 𝑖 | | < 𝜖 | |𝑏 | |

The reduced KKT matrix 𝐾 in OSQP will always be positive-
definite, allowing the reduced system (3) to be solved using the
Preconditioned Conjugate Gradient (PCG) iterative method, which
was done in cuOSQP [29], the CUDA-based GPU implementation
of OSQP. An iteration of PCG is shown in Algorithm 2, and requires
only a single matrix-vector product with 𝐾 and other vector opera-
tions, making the PCG simpler and easier to implement compared
to the 𝐿𝐷𝐿𝑇 factorization solver. When using PCG to solve (3),
𝐾 should never be explicitly computed, since forming the matrix-
matrix product 𝐴𝑇𝐴 could destroy any structure/sparsity that the
problem originally possessed and require storing a dense matrix for
𝐾 . Therefore, it is better to store 𝑃 , 𝐴, and 𝐴𝑇 separately and then
perform the matrix-vector multiplication 𝐾𝑝𝑖 in an incremental
manner.

The use of PCG in OSQP has several advantages over the 𝐿𝐷𝐿𝑇
direct factorization method. Firstly, using PCG allows for more
frequent updates of 𝜌 , since 𝐾 is never formed explicitly and the
numerical refactorization step from the 𝐿𝐷𝐿𝑇 solver is avoided.
Secondly, the computation cost of PCG is much lower than the com-
putation cost of the 𝐿𝐷𝐿𝑇 factorization steps in an OSQP iteration
for large and sparse KKT matrices. Finally, PCG can present more
opportunities for parallelization and performance tuning, making
it better for embarrassingly parallel architectures like GPUs and
FPGAs.

While the GPU implementation of OSQP utilized PCG [29], it
was only able to take partial advantage of these benefits, since it is
difficult to fully exploit problem-specific structures on the GPU’s
homogeneous architecture. In this work, we also adopt the PCG
method to solve the reduced KKT system (3), but additionally in-
troduce a methodology for designing problem-specific acceleration
architectures to speed up the computation of the matrix-vector
product.

3 THE RSQP FRAMEWORK
RSQP encompasses both the processing architecture running on the
FPGA accelerator, as well as the software framework that performs
problem-specific architectural customization and integrates with
the rest of the software solver. In this section, an overview of the
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entire framework is first provided, while the detailed customization
algorithms are discussed in the next section.

3.1 Processing Architecture Overview
Figure 1 shows an overview of RSQP’s reconfigurable processing
architecture that runs on the FPGA. In this architecture, the high
bandwidth memory (HBM) of the FPGA serves as the main data ex-
change between the CPU and the FPGA. The problem data matrices
𝑃 , 𝐴 and 𝐴𝑇 , the right hand side of (3), as well as results from the
accelerator are all passed between the CPU and the FPGA through
HBM.

The high bandwidth of HBM is essential to achieve high perfor-
mance on the accelerator since the performance of the core sparse
matrix-vector multiply (SpMV) and vector-vector operations is lim-
ited by the memory bandwidth. The datapath of RSQP consists
of a configurable sparse matrix-vector multiply (SpMV) engine, a
vector engine, an on-chip vector buffer (VB), as well as a special
compressed vector buffer (CVB). The widths of the data paths con-
necting these major components are uniformly determined by a
configurable data width parameter𝐶 . The vectors in the algorithms
are partitioned across 𝐶 VBs for parallel access in sequence. As a
result, the number of clock cycles needed to complete the vector op-
erations and data transferring instructions is inversely proportional
to 𝐶 . Vectors related to the decision variables (𝑥, 𝑥, 𝑏, 𝑟, 𝑑,𝑢, 𝑝) have
length 𝑛, while vectors related to constraints (𝑧, 𝜈,𝑦) have length
𝑚. The clock cycles required for their dot product, element-wise
operations and data movement are thus 𝑛/𝐶 and 𝑚/𝐶 respectively.
As such, the data width parameter𝐶 can be effectively used to tune
the level of parallelism for problems of different scales. To solve
large problems faster, we can instantiate RSQP with a larger 𝐶 .

The sparse matrices 𝑃 , 𝐴 and 𝐴𝑇 of the problem, represented by
the non-zero values and their coordinates, are partitioned across
different HBM channels for high throughput parallel access. Main-
taining a high computation throughput of the SpMV engine is
crucial for the speed of the OSQP algorithm. In order to provide the
desired performance for a wide range of optimization problems, the
data path and functional units of RSQP’s SpMV engine are designed
to be flexible and customizable. In particular, the following archi-
tectural features, highlighted by colors in Figure 1, are all designed
to be parametrizable and will be optimized for each user-provided
problem:
• the multiplier-adder inter-connection within the SpMV func-
tional unit,
• the routing logic between the SpMV engine and VBs, and
• the compressed Vector Buffers (CVB), which provide parallel
random access to the vector of the multiplication.

3.2 Customizable Data Paths within the SpMV
Engine

The SpMV operation is a memory-bounded operation since every
non-zero value of the matrix stored on the HBM is used only once
per SpMV operation. In order to read 𝐶 non-zero values of the
problem matrices from the HBM at every clock cycle, the access
pattern needs to be contiguous. In the simplest case, all non-zero
value packs of length 𝐶 fed from the HBM at each clock cycle
belong to the same matrix row. In this case, the SpMV Engine

simply needs to perform a 𝐶-input-single-output Multiply-and-
Accumulate (MAC) to produce a complete dot product between the
matrix row and the vector every clock cycle. This ideal baseline
multiplier-adder connection within the SpMV engine can benefit
from using a balanced binary tree structure to provide the desired
throughput.

Unfortunately, in real-world problems, data fragmentation due
to the use of large values for 𝐶 and the great degree of variation in
matrix sparsity patterns can rapidly reduce the utilization efficiency
of the SpMV engine. The non-zero values in the pack provided to
the SpMV Engine at each clock cycle are very likely to belong
to different matrix rows. Consequently, since additional zeros are
needed to be inserted to break the pack into different rows, the
ideal baseline MAC unit with a balanced reduction tree structure
will not be able to complete the dot products of all matrix rows
contained in the non-zero pack with the vector in each clock cycle.

If we have some prior knowledge about the row distributions
contained in the non-zero packs, connections of the multipliers
and adders can be customized to deal with the known distribution
efficiently. For example, if there aremany non-zero packs containing
just two matrix rows with lengths no greater than 𝐶/2, we can add
dedicated output data paths to the intermediate adders. Then the
non-zero pack can be sent to the MAC tree for computing two dot
products directly without inserting extra zeros. If non-zero packs
containing 4 rows are common, we can add another set of dedicated
output data paths to adders in even earlier stages. The detailed
methodology of extracting row distribution patterns and designing
customized MAC connections automatically will be discussed in
Section 4.

3.3 Aligning the SpMV Results
The customized data paths inside the SpMV engine lead to variable
result output lengths. RSQP has a routing module between the
SpMV Engine and the VB to align the variable result lengths back
to width 𝐶 for subsequent storage and vector operations. Given
the customization inside the SpMV engine, the companion routing
logic can be generated automatically.

3.4 Compressed Vector Buffers
The CVB in Figure 1 provides parallel random access to 𝐶 loca-
tions of the vector to be multiplied with the matrix elements in
every clock cycle. Providing the ability of multiple random accesses
through simple duplication of the vector by 𝐶 copies has severe
scalability pressure on the capacity of the on-chip memory. Besides,
the vector needs to be updated by other steps in Algorithm 1 and
Algorithm 2 after every MV operation. The time spent on vector
duplication instructions will increase significantly if we have too
many copies of the vector in the CVB, so the CVB requires a cus-
tomized design to provide the desired parallel access capability with
a low profile.

3.5 Control
The operation of the RSQP processing architecture is controlled by
a simple instruction unit. Table 1 lists the instructions supported
by RSQP and their usage when implementing Algorithm 1 and
Algorithm 2 on this architecture. The algorithms are broken into a
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Figure 1: Architecture Design

Table 1: Instruction Set

Instruction Type Function Usage

Control Exit the algorithm loop if
residual is less than threshold

A1-8, A2-
10

Scalar Arithmetic Addition, subtraction, divi-
sion, multiplication

A2-3,7,9

Data transfer Read/write a vector from/to
memory

A2-1,10

Vector Operations Linear combination of
two vectors, element-wise
comparison/reciprocal/multi-
plication, dot product

A1-
4,5,6,7,A2-
1,3,4,5,6,7,8

Vector Duplication Duplicate vector copies across
buffers

A2-1,3

SpMV Multiply a matrix with a vec-
tor and write the result to the
vector buffer

A1-8, A2-
1,3

sequence of instructions which will be downloaded to the instruc-
tion ROM from HBM. The instructions activate the vector engine,
SpMV engine, and data movement modules of RSQP as needed.
Each vector operation instruction takes a complete vector from a
CVB and another vector from a VB. The scalar result of the vector
operation instruction is written to scalar registers. If the result is
a vector, it can be written to a CVB or a VB based on the field of
the instruction. The SpMV instruction takes the matrix input and
vector indices from HBM and vector input from a CVB. The vector
indices are used to find the correct location of the vector in the
CVB. The SpMV result is written to the VB. Each instruction can
only start after the previous instruction has completed.

3.6 Customization Evaluation Metric
Before diving into the methodology of customizing the MAC tree
and CVBs, we first describe a metric that RSQP uses to evaluate the
effect of customization on the performance. Imagine we have an

ideal architecture that has the perfect customization for a specific
problem sparsity structure. It only needs one copy of the vector to
provide the desired parallel random access capability and can finish
the dot products of all the matrix rows contained in the non-zero
values pack fed at every clock cycle regardless of their distribution
across different matrix rows. Denote the number of non-zeros in
the matrix as nnz and the length of the vector as 𝐿, then a single
run of the SpMV and vector duplication instruction on the ideal
architecture will take 𝑇img = nnz+𝐿

𝐶
clock cycles.

Now consider an architecture customization that may not match
the problem sparsity structure very well. For the SpMV instruction,
it needs to insert extra zeros to the non-zero values and indices
streamed in fromHBM at every clock cycle to handle various matrix
row distributions. Denote the total number of extra zero padding
as 𝐸𝑝 . For the vector duplication operation, it may store 𝐸𝑐 extra
copies of the vector in the CVB for parallel access. A single run of
the SpMV and vector duplication instruction on this architecture
variation will take 𝑇real =

nnz+𝐸𝑝+𝐸𝑐𝐿
𝐶

clock cycles. To evaluate an
architecture customization, we can use the imaginary architecture
as a reference to define its match score, 𝜂, with a given problem
structure as

𝜂 B
nnz + 𝐿

nnz + 𝐸𝑝 + 𝐸𝑐𝐿
.

The range of 𝜂 is (0, 1) and can be interpreted as the extra
run time introduced in the realized architecture customization,
i.e. 𝑇img =

𝑇real
𝜂 . We use this match score to guide the design of

problem-specific functional units and data paths. Given a problem
structure, we want a customized architecture whose 𝜂 is close to 1,
meaning we want to design
• customized interconnections within the SpMV engine so 𝐸𝑝
is close to 0, and
• customized organizations of CVB so 𝐸𝑐 is close to 1.

4 PROBLEM-SPECIFIC CUSTOMIZATION
In this section, we present our methodology for optimizing the
𝐸𝑝 and 𝐸𝑐 of an architecture customization to match the given
problem structure. The optimization of 𝐸𝑝 is modeled as a string
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compression problem and and the optimization of 𝐸𝑐 is modeled as
a mixed integer linear programming problem.

4.1 String Representations of Sparsity Structure
To discuss how to optimize 𝐸𝑝 and do connection customization
accordingly, we use a string-based encoding to describe the sparsity
structure of problem matrices. Each row of the matrix is assigned a
character based on the number of non-zero values, transforming
the sparsity structure of the matrix into a string. Figure 2(a) is a
simple example of such transformation where rows with 1, 2, 3, and
4 non-zero values are assigned 𝑎, 𝑏, 𝑐 , and 𝑑 respectively.

After all the rows are encoded, repeated sub-strings imply similar
computation patterns while doing the MV operation. Assuming
the non-zero values of the matrices are stored contiguously on the
off-chip memory and 𝐶 = 4 elements can be read out at each clock
cycle. If there are many 𝑐𝑎 sub-string, that means there are many
rows with 3 non-zero followed by rows with only one non-zero.
Consider an 8-input MAC unit with the capability of consuming 4
pairs of inputs to compute their MAC value every clock cycle. To
map the 𝑐𝑎 computation pattern onto the above MAC unit, the rows
need to be padded with zeros first to align with the input width,
then 2 clock cycles are required to feed in the inputs.

If we allow more flexible connections within the MAC unit like
Figure 2(b), the computation throughput of a specific computation
pattern can be improved by building a customized reduction tree
structure. For the 𝑐𝑎 pattern, we could instantiate connections like
Figure 2(d). Clock cycles of taking the input are reduced to one and
the overall computation throughput is improved by 2 times. Given
any sub-string which repeats frequently, we could partition the in-
puts and instantiate connections accordingly to reduce the number
of zero-paddings. For convenience, We’ll refer to the corresponding
MAC unit structure using its associated sub-strings 𝑆 = {𝑠0, 𝑠1, ...}.
As an example, Figure 2(c) is a MAC unit with structures 𝑆 = {𝑏𝑏, 𝑑}.
Some connections can be re-used across structures to save circuit
areas.

MAC tree structures with different input partitions help improve
the computation throughput, but they also lead to variable-length
outputs. A companion routing logic is needed to align the outputs
with the original data width 𝐶 for subsequent vector operations as
shown in Figure 2(f).

Here we show the simple case of 𝐶 = 4 for illustration purposes
and the number of sub-strings patterns is limited. We used up to
𝐶 = 64 in our evaluation and the number of available patterns in
the sparsity string encoding becomes much larger. In real problem
matrices, we use log2 (nnzrow) instead of nnz𝑟𝑜𝑤 to encode the
sparsity to form a better cluster of similar computation patterns.
Rows with less than 1, 2, 4, ..., 64 non-zero values are mapped to
𝑎, 𝑏, 𝑐, ...., 𝑔 respectively. If a row has more than 64 non-zero values,
we assigned a series of $ to it and break down the computation
to a series of 𝑔. Figure 2(g) shows sparsity encoding examples of
problem matrices from different applications.

4.2 Optimizing 𝐸𝑝
Our string-based encoding provides a convenient way to discuss 𝐸𝑝
optimization. We use the string encoding 𝑑𝑏𝑏𝑎𝑎𝑎𝑐𝑎 of the sparsity
structure in Figure 2 as an example to show how to schedule its

computations onto the MAC unit with structure 𝑆 = {𝑏𝑏, 𝑑} using
a series of string replacement.

(1) We first identify all 𝑏𝑏 in the string and replace them with
∗ (or any character that is not associated with MAC unit
structures) as shown in Figure 2(e).

(2) 𝑏𝑎, 𝑎𝑏, and 𝑎𝑎 can also be mapped onto 𝑏𝑏 with some zero
paddings and we perform the replacement using a regular
expression 𝑏𝑎 |𝑎𝑏 |𝑎𝑎.

(3) Finally, we identify and replace 𝑑 .
The total amount of extra padding can be computed through the
length of the final string𝑤sched after the scheduling by:

𝐸𝑝 = 𝐶 · length(𝑤sched) − nnz(𝐴).
Note that we search for 𝑏𝑏 |𝑏𝑎 |𝑎𝑏 |𝑎𝑎 before searching for 𝑑 . The
length of the replaced string and 𝐸𝑝 are both smaller in this way. The
above scheduling procedure can be generalized to any 𝑆 and sparsity
string encoding. The general rule is that we start the replacement
process with the longest sub-string in 𝑆 and its associated regular
expressions. Then we proceed with the second longest sub-string
and so on.

In the above example, 𝐸𝑝 can be further reduced if we include
more structures like 𝑐𝑎 in 𝑆 . However, such a reduction comes at the
cost of more connections and routing logic for implementing larger
|𝑆 |. This is the major constraint in performing problem-specific
MAC tree customization as 𝑆 can only include a limited number
of sub-strings. Let the target size of 𝑆 to be |𝑆 |t𝑎𝑟𝑔𝑒𝑡 , then the 𝐸𝑝
optimization problem can be formulated as:

minimize
𝑆 = {𝑠0, 𝑠1, ...}

length(𝑤sched)

subject to |𝑆 | ≤ |𝑆 |t𝑎𝑟𝑔𝑒𝑡
(4)

Since the computational complexity of solving Problem 4 is very
hard, we used a method based on the dictionary-based lossless
compression algorithm LZW [33] to search for a candidate 𝑆 .

4.3 Optimizing 𝐸𝑐
The vector of the MV operation is stored in CVBs and each buffer
has one read port. Due to port limitations, each buffer can only
provide random access to one location of the vector at every clock
cycle. After the scheduling, 𝐶 random locations of the vector need
to be accessed and multiplied with the matrix non-zero packs at
every clock cycle. A simple solution to provide the required parallel
access capability is to store 𝐶 copies of the same vector using 𝐶
buffers. However, the vector needs to be updated frequently and
the simple duplication solution will suffer from slow update time
(large 𝐸𝑐 = 𝐶) and also cost many memory resources.

The straightforward duplication of memory organization has
many redundancies. Each vector buffer just provides vector ele-
ments to one multiplier. After the MAC unit mapping process, only
a subset of the vector is scheduled on each multiplier due to the
matrix sparsity. Hence, every buffer only needs a partial copy of the
vector. We use the matrix sparsity structure in Figure 2(a) as an ex-
ample. The full copy of the vector has 8 elements: {1, 2, 3, 4, 5, 6, 7, 8}.
The gray numbers in Figure 3(a) indicate that they are never used in
the entire computation. After removing the redundant gray copies,
the rest of the elements can be compressed to reduce memory usage.
The workload of updates and 𝐸𝑐 are also reduced. We need 2 clock
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Figure 2: (a)–(f) Problem-specific MAC tree structure design flow. (g) Examples of sparsity encoding from the benchmark
problems. The non-zero values of the matrix are represented by white pixels.
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Figure 3: Compressed vector buffers

cycles to update all 1s and 2s in the original memory organization
due to memory port limitations. After the compression, we only
need 1 clock cycle.

The compression can be done during design time as the sparsity
structure of the matrix remains the same across different instances
of the problem sequence. Denote the vector access request of each
buffer as 𝑉 ∈ R𝐿×𝐶 ,𝑉𝑗𝑘 ∈ {0, 1}. 𝑉𝑗𝑘 = 1 means the 𝑗th element of
the vector is required on buffer 𝑘 . Denote𝑀 ∈ R𝐿×𝐿, 𝑀𝑖 𝑗 ∈ {0, 1}
as the compression map. 𝑀𝑖 𝑗 = 1 means the 𝑗th element of the
vector can be put at buffer location 𝑖 . The offline compression can

be modeled as a mixed integer programming problem as follows:

minimize
𝑀

𝐿−1∑︁
𝑖=0

𝐺𝑖

subject to
𝐿−1∑︁
𝑗=0

𝑀𝑖 𝑗𝑉𝑗𝑘 ≤ 1, ∀𝑖, 𝑘,

𝐿−1∑︁
𝑖=0

𝑀𝑖 𝑗 = 1, ∀𝑗,

𝐿−1∑︁
𝑗=0

𝑀𝑖 𝑗 ≤ 𝐿𝐺𝑖 ,∀𝑖

(5)
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The above problem is a mixed integer linear program and is
NP-hard. We first modeled the problem using CVXPY [11], but
finding the solution to (5) is not tractable, even when 𝐶 = 16 and
matrix dimension is 500. Instead, we use the First-Fit algorithm
to find an approximate solution. Figure 3(e) shows an example
of 𝑉 before and after compression in an optimal control problem
from the benchmark. After the solution to Problem 5 is found,
we generate two hardware modules based on 𝑀 to provide the
parallel access capability during run time. The address translation
module provides correct copies of the vector to multipliers and
the duplication control module updates all vector copies across
iterations.

4.4 Adapting the Problem Structure
Note that in the QP (1), we can permute the rows of 𝑃 and 𝐴 to
alter the problem structure. The solution of the original problem
can be recovered through reverse permutation once Algorithm 1
terminates. To optimize 𝐸𝑝 , we can permute rows of A to construct
a string encoding with more repeat sub-strings, reducing the lower
bound of 𝐸𝑝 . Row and column permutations can also help to con-
struct a more sparse 𝑉 in (5), so the achievable compression ratio
is higher. However, we must maintain the symmetry of the KKT
matrix, so we must permute both the rows and columns by the same
sequence. For example, if we choose to swap row 𝑖, 𝑗 of matrix 𝑃 and
row 𝑖, 𝑗 of matrix 𝐴𝑇 , the columns 𝑖, 𝑗 of matrix 𝑃 and columns 𝑖, 𝑗
of matrix𝐴 also need to be swapped to maintain the symmetry. Due
to this limitation, we observe that adapting the problem structure
through matrix row permutation has little improvement effect on
the achievable 𝐸𝑝 and 𝐸𝑐 .

4.5 Architecture Generation
After we solve the 𝐸𝑝 and 𝐸𝑐 optimization problem, we pass the
customization of the MAC tree structure, the indices translation,
the duplication map for the CVBs, and the routing logic between the
MAC tree and VBs to our hardware generation program for creating
the High Level Synthesis (HLS) description of the architecture for
the specific problem structure. Figure 6 gives the overview of the
generating flow, and Figures 4 and 5 show an example of how
the routing logic between the MAC tree and the vector buffer is
customized and instantiated for each problem.

5 EVALUATION
In this section, the end-to-end solver performance improvement by
applying the problem-specific architecture customization proposed
in the previous section is evaluated in detail. The performance and
energy efficiency of the customized hardware solver is compared
with a GPU implementation of OSQP. In our evaluations, we use the
benchmark problems from [30], which contain a wide range of real-
world problems from six application domains including portfolio
optimization (portfolio), Lasso (lasso), Huber fitting (huber),
control engineering (control), support vector machines (svm), and
equality-constrained QP (eqqp). There are 120 total problems in
the benchmark, and as shown in Figure 7, the number of decision
variables ranges from 101 to 105 and the total number of non-zero
values in the 𝑃 and 𝐴 matrices of each problem range from 102 to
106.

1 snippet_file = src_root + 'align_acc_cnt_switch.h'
2 with open(snippet_file , "w") as HLS_description:
3 acc_pack_width = isca_c // char2nnz(arch_code [0], isca_c)
4 if len(arch_code)==1:
5 HLS_description.write("align_out [0] << acc_pack.data [0];\n")
6 else:
7 HLS_description.write("switch (acc_cnt) {\n")
8 for item in range(len(arch_code)):
9 case_width = isca_c // char2nnz(arch_code[item], isca_c)
10 HLS_description.write("case {}:\n".format(case_width))
11 HLS_description.write("\tswitch (align_ptr){\n")
12 for i in range(acc_pack_width):
13 HLS_description.write("\tcase {}:\n".format(i))
14 for j in range(case_width):
15 HLS_description.write("\t\talign_out [{0}] << acc_pack.

data [{1}];\n".format ((j+i)%acc_pack_width ,j))
16 HLS_description.write("\t\tbreak ;\n")
17 HLS_description.write("\t}\n")
18 HLS_description.write("\tbreak ;\n")
19 HLS_description.write("}\ nalign_ptr += acc_cnt ;\n")

Figure 4: Problem-specific customization of the routing logic

1 void spmv_align(int align_cnt ,
2 data_stream align_out[ACC_PACK_NUM],
3 cnt_pack_stream &acc_cnt_in ,
4 data_stream &acc_complete_in ,
5 spmv_pack_stream &spmv_pack_in)
6 {
7 ap_uint <ALIGN_PTR_BITWIDTH > align_ptr = 0;
8 align_loop:
9 for (int loc = 0; loc < align_cnt; loc++)
10 {
11 #pragma HLS pipeline II = 1
12 u16_t acc_cnt = acc_cnt_in.read();
13 spmv_pack_t acc_pack;
14 if(acc_cnt == CNT_AS_FADD_FLAG){
15 acc_pack.data [0]= acc_complete_in.read();
16 acc_cnt = 1;
17 }
18 else{
19 acc_pack = spmv_pack_in.read();
20 }
21 #include "align_acc_cnt_switch.h"
22 }
23 }

Figure 5: Instantiating customized routing logic using HLS

Problem structure input

Sparsity Structure Encoding

HLS code generation

Bitstream build

Solve 𝐸𝑝, 𝐸𝑐 Optimization to generate 

• Connections within the MAC tree 
• Size and indices translation of CVB
• Connections between Mac Tree and VB

Figure 6: Problem-specific hardware generation flow

5.1 Evaluation Setup
The system used for the evaluation contains the devices in Table 2.
The U50 FPGA is the major platform for testing different archi-
tectures customized for different problem structures, and includes
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Figure 7: Number of non-zero values inmatrices and decision
variables in the benchmark

Table 2: Platform Details

Device Model Peak Throughput Lithography TDP

AMD-Xilinx U50 FPGA 0.3 teraflops 16 nm 75W
Intel i7-10700KF CPU 0.5 teraflops 14 nm 125W
NVIDIA RTX3070 GPU 20 teraflops 8 nm 220W

5952 fixed-point DSPs, 28.4MB on-chip memory, and 8GB High
Bandwidth Memory (HBM). These resources can support all the
customized architecture generated for the benchmark. The peak
floating-point computation throughput of the FPGA is calculated
under the assumption that the clock frequency is 150MHz and each
single precision floating-operation consumes 3 fixed-point DSPs.
The GPU used for comparison was the RTX 3070 with NVIDIA’s
Ampere architecture, which contained 8GB of off-chip memory and
46 streaming multiprocessors (SMs), each performing a maximum
of 128 single precision floating point operations every clock cycle
when running at 1.75GHz.

We used the current 1.0 development branch of OSQP [30] as the
benchmark software, with the CPU implementation serving as the
performance baseline. This branch can also choose to accelerate
Algorithm 2 using either Intel’s Math Kernel Library (MKL) [31]
or NVIDIA’s cuSparse [27] library. The current implementation
of RSQP has been integrated with the OSQP software framework,
and the U50 FPGA can accelerate the entire PCG computation
in the OSQP solver. To switch between the different acceleration
backends, OSQP passes a build flag to the compilation process to
choose and link the selected backend into the compiled executable
binary of the solver. We first run the entire benchmark on MKL
using 8 threads. Figure 8 shows the percentage of the solver time
spent on Algorithm 2 for each problem in the benchmark. For most
problems, solving the KKT system using MKL’s CG acceleration
takes over 95 % of the total solver run time, showing more efficient
acceleration of PCG is necessary to further improve the solver
speed.

5.2 Performance Evaluation
We first evaluate the effectiveness of our customization methodol-
ogy using the metric 𝜂 ∈ (0, 1) proposed in Section 3. A baseline
architecture without applying the 𝐸𝑝 and 𝐸𝑐 optimization was gen-
erated to provide the baseline 𝜂 for each problem in the benchmark.
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Figure 8: The percentage of the CPU solver time spent on
solving the KKT system
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Figure 9: Improvement of 𝜂 after applying problem-specific
customization
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Figure 10: Solver Speedup by Applying Problem-specific Cus-
tomization

In this baseline, only a single output was used in the MAC tree
within the SpMV engine, and 𝐶 copies of the vector were stored in
CVB.

Figure 9 shows the improvement of 𝜂 after applying problem-
specific architectural customization on the benchmark. The results
show effective improvements of 𝜂 on most problems except in
the eqqp applications. As shown in Figure 2(g), the matrix sparsity
pattern of problems in eqqp is less structural than other applications,
which led to the reduced effectiveness in the cutomization process.

Next, we compare the end-to-end solver performance difference
between the baseline and the customized architectures. Figure 10
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Figure 11: End-to-end solver speedup(higher is better) of
FPGA and GPU vs CPU

shows that our customization methodology achieves 1.4 to 7.0×
improvement. The effect on eqqp is less significant and it agrees
with the improvement on 𝜂.

Figure 11 shows the speedup over the MKL backend of the base-
line architecture by the customized architectures, the baseline archi-
tecture before customization, as well as the GPU implementation.
As shown in the figure, architecture customization substantially ex-
tends the advantage of the FPGA solver to all but the largest bench-
mark problems. In spite of the much lower theoretical throughput
when compared to the CPU and GPU, the FPGA accelerators with
architectural customization achieved up to 31.2 and 6.9 times end-
to-end speedup, respectively.

5.3 Microarchitectural Performance and Area
Trade-off

To study the effect of microarchitectural specialization of the SpMV
kernel on performance and resource consumption, a range of design
candidates for an instance of the svm problemwith 20 616 non-zeros
were produced and synthesized for hardware. Results are shown in
Table 3. The architectural candidates are denoted as 𝐶{𝑆} where
𝐶 is the width of the data path and 𝑆 is the structure of the MAC
unit. For example, 16{4𝑐1𝑒} denotes an architectural candidate
with 𝐶 = 16 and 𝑆 = {𝑐𝑐𝑐𝑐, 𝑒}. Overall, architectures with larger
values of 𝐶 and |𝑆 | consumes more hardware and can complete
the given SpMV operation in fewer number of cycles. However,
the maximum clock frequency that the design may run at (𝑓max)
is often affected by the size of the design, causing diminishing
return in the final throughput performance. As a result, although
architectures such as 64{64𝑎4𝑒1𝑔} have a big improvement on 𝜂
through specialization, their hardware frequency are limited by
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Figure 12: Solver run time (lower is better) on CPU, GPU, and
FPGA

the complex routing logic in the brown part of Figure 1, which
ultimately impact their throughput performance.

Table 3: Trade-off Between Performance and Resources

Architecture 𝑓max Δ𝜂 SpMV/𝜇𝑠 DSP FF LUT

16{𝑒 } 300 0.000 0.048 80 12218 8556
16{16𝑎1𝑒 } 276 0.226 0.084 80 17190 12502

32{32𝑎4𝑑1𝑓 } 173 0.433 0.130 160 32441 23648
16{16𝑎2𝑑𝑒1} 273 0.345 0.141 80 17350 12623
64{64𝑎4𝑒1𝑔} 121 0.538 0.144 320 60202 50405
32{4𝑑1𝑓 } 300 0.337 0.150 160 22958 13880

32{32𝑎4𝑑2𝑒1𝑓 } 179 0.484 0.167 160 32581 23812
32{4𝑑2𝑒1𝑓 } 300 0.369 0.172 160 23118 13977
32{16𝑏4𝑑1𝑓 } 257 0.406 0.172 160 27338 17319
64{4𝑒1𝑔} 270 0.397 0.174 320 42562 23099

64{8𝑑4𝑒1𝑔} 251 0.489 0.240 320 44403 24245

5.4 Power Efficiency Comparison
To compare the power efficiency of the solvers using the GPU
and FPGA backends, we run each benchmark problem 100 times
and record the power trace using device management command
line tools named nvidia-smi and xbutil, respectively. The power
consumption of the FPGA is steady at 19W while running the
benchmark, while the GPU consumes 44W to 126W. Figure 13
compares the energy efficiency, defined as the number of problem
instances each device can run using unit power. RSQP can achieve
up to 22.7× improvement over the GPU.
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Figure 13: Power efficiency comparison on the benchmark

6 RELATEDWORKS
GPU-based implementations of QP solvers have focused on two
classes of algorithms: first-order methods (such as ADMM) and
interior-pointmethods. In [18], Huang et. al. implemented an interior-
point method for QPs on a single GPU and utilized dense matrices
and Gauss-Jordan elimination to solve the KKT equation. Yu et.
al. [32] focused on accelerating first-order methods, and showed
that writing custom dense matrix-vector multiplication kernels
specific for the linear model predictive control (MPC) problem gave
a 2.3× speedup compared to using the dense matrix-vector mul-
tiplication provided by the cuBLAS library. Recently, Cole et. al.
[9] proposed using a problem-level transformation technique that
condenses the sparse KKT matrix arising from the interior-point
method for the QP (1) into a smaller dense matrix that is then solved
using a Cholesky factorization on a single GPU. Compared to a
sparse CPU implementation, they reported their dense solver on
the GPU reduced the solver runtime by an order of magnitude.

In 2020, Schubiger et. al. [29] proposed the cuOSQP solver, which
is an implementation of the OSQP algorithm in the CUDA language.
In cuOSQP, the matrices are stored in Compressed Sparse Rows
(CSR) format, and then the matrix-vector operation from the cuS-
parse library is used to perform the computations. cuOSQP was
shown to be significantly faster than the CPU-based OSQP for
problems with more than 105 variables, with the CPU-based imple-
mentation performing better for the smaller problems, since the
smaller problems cannot fully utilize the GPU or overcome the high
initial cost of data movement from the CPU to the GPU.

FPGA implementations of QP solvers have customarily been fo-
cused on more specific problem types, and so tend to be specialized
to the structure of the 𝑃 and 𝐴 matrices in the problem, with the
majority of reported solvers being used for the linear MPC prob-
lem and using either interior-point methods, active-set methods
or first-order methods. These customizations include the use of
the Compressed Diagonal Storage (CDS) sparse matrix format for
storing block-banded matrices [4] in an efficient manner, and the
removal of redundant data (such as repeated matrix blocks, or rows
of structured zeros/ones) [22], leading to a memory savings of over
75% for MPC. Compared with the GPU implementations, FPGA
QP solvers have been focused on smaller problems with between
10-300 variables found in linear MPC [26], and have reported solver
runtimes on the order of 1-10𝜇s [21] and 20-30𝜇s [10] for the solvers
tailored to the MPC problem that were hand-coded/optimized in
VHDL/Verilog and coded in HLS, respectively.

SpMV acceleration is an important part of our work. There is a
rich body of research on related accelerators. [24] proposed a single

architecture design for computing both dense matrix-vector multi-
plication and sparse matrix-vector multiplication. [15] proposed a
compressed interleaved sparse rows format to explore parallelism
across different matrix rows. [13] extends [15] and avoids the cen-
tralized row encoding and decoding. However, they all propose a
single acceleration architecture and target matrices with general
sparsity structures. One key contribution of our work is the mech-
anism of matching the architecture configurations with various
sparsity patterns. The only similar work we can identify is [17],
which proposed an automation flow for generating specific hard-
ware based on the sparsity pattern of the input matrix. However,
their framework only works on block diagonal patterns that appear
in a specific application domain. As far as we know, we are the
first work that describes the sparsity patterns of input matrices
in fine granularity and has a systematic approach to generate the
architecture accordingly.

7 CONCLUSION
In this paper, we have presented the design and implementation of
RSQP, an FPGA accelerated framework for solving convex quadratic
programs. The processing architecture of RSQP is customizable, and
we developed an automated method to adapt this architecture to
the particular sparsity structure of the user input. Using extensive
benchmark testing, we showed that significant improvement to the
accelerator’s performance can be achieved through this architec-
tural customization. The resulting FPGA-accelerated framework
also achieves superior performance and power-efficiency over the
baseline CPU implementation using MKL as well as an equivalent
GPU-accelerated QP solver. Although it takes time to complete the
low-level implementation process of a customized FPGA acceler-
ator for a particular optimization problem, this initial hardware
creation time is amortized when the same architecture is reused
in solving many instances of the same problem with different pa-
rameters. By building on the OSQP solver, RSQP can be further
integrated with high-level general-purpose optimization frame-
works such as CVXPY, opening up new opportunities to accelerate
a wide spectrum of real-world parametric convex quadratic opti-
mization problems in the future. We also plan to enhance the user
experience through tighter integration between software and hard-
ware to allow seamless hardware generation to be integrated with
the high-level user software ecosystem, and to further enhance the
performance of the proposed architecture by leveraging improved
memory bandwidth in advanced FPGAs.

ACKNOWLEDGMENTS
This research was supported in part by ACCESS – AI Chip Center
for Emerging Smart Systems, sponsored by InnoHK funding, Hong
Kong SAR, and the Research Grants Council (RGC) of Hong Kong
under project R7003-21. I. McInerney was supported by the Royal
Society and the Exascale Computing Project (17-SC-20-SC), a col-
laborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration.

REFERENCES
[1] Karam M. Abughalieh and Shadi G. Alawneh. 2019. A Survey of Parallel Im-

plementations for Model Predictive Control. IEEE Access 7 (2019), 34348–34360.
https://doi.org/10.1109/ACCESS.2019.2904240

https://doi.org/10.1109/ACCESS.2019.2904240


ISCA ’23, June 17–21, 2023, Orlando, FL, USA Wang and McInerney, et al.

[2] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. 2019. Differen-
tiable Convex Optimization Layers. In Advances in Neural Information Processing
Systems.

[3] Brandon Amos and J Zico Kolter. 2017. Optnet: Differentiable optimization as a
layer in neural networks. In International Conference on Machine Learning. PMLR,
136–145.

[4] David Boland and George A. Constantinides. 2010. Optimising Memory Band-
width Use for Matrix-Vector Multiplication in Iterative Methods. In Proceedings
of the International Symposium on Applied Reconfigurable Computing. Elsevier,
Bangkok, Thailand, 169–181. https://doi.org/10.1007/978-3-642-12133-3_17

[5] Stephen Boyd, Enzo Busseti, Steve Diamond, Ronald N Kahn, Kwangmoo Koh,
Peter Nystrup, Jan Speth, et al. 2017. Multi-period trading via convex optimization.
Foundations and Trends® in Optimization 3, 1 (2017), 1–76.

[6] Stephen Boyd, Mark T Mueller, Brendan O’Donoghue, Yang Wang, et al. 2013.
Performance bounds and suboptimal policies for multi–period investment. Foun-
dations and Trends® in Optimization 1, 1 (2013), 1–72.

[7] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge
University Press.

[8] Marc-Alexandre Boéchat, Junyi Liu, Helfried Peyrl, Alessandro Zanarini, and
Thomas Besselmann. 2013. An architecture for solving quadratic programs
with the fast gradient method on a Field Programmable Gate Array. In 21st
Mediterranean Conference on Control and Automation. 1557–1562. https://doi.
org/10.1109/MED.2013.6608929

[9] David Cole, Sungho Shin, François Pacaud, Victor M. Zavala, and Mihai Anitescu.
2022. Exploiting GPU/SIMD Architectures for Solving Linear-Quadratic MPC
Problems. arXiv 2209.13049 (Sept. 2022). https://doi.org/10.48550/arXiv.2209.
13049 arXiv:2209.13049 [math]

[10] Aitor del Rio Ruiz and Koldo Basterretxea. 2020. Towards the Development of a
CAD Tool for the Implementation of High-Speed Embedded MPCs on FPGAs.
In 2020 European Control Conference (ECC). 941–947. https://doi.org/10.23919/
ECC51009.2020.9143666

[11] Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-embedded modeling
language for convex optimization. The Journal of Machine Learning Research 17,
1 (2016), 2909–2913.

[12] Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke. 2009. Efficient nu-
merical methods for nonlinear MPC and moving horizon estimation. Nonlinear
model predictive control: towards new challenging applications (2009), 391–417.

[13] Yixiao Du, Yuwei Hu, Zhongchun Zhou, and Zhiru Zhang. 2022. High-
performance sparse linear algebra on hbm-equipped fpgas using hls: A case
study on spmv. In Proceedings of the 2022 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 54–64.

[14] Yousef Elkurdi, David Fernández, Evgueni Souleimanov, Dennis Giannacopoulos,
and Warren J. Gross. 2008. FPGA architecture and implementation of sparse
matrix–vector multiplication for the finite element method. Computer Physics
Communications 178, 8 (2008), 558–570.

[15] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S Chung, and Greg Stitt. 2014.
A high memory bandwidth fpga accelerator for sparse matrix-vector multiplica-
tion. In 2014 IEEE 22nd Annual International Symposium on Field-Programmable
Custom Computing Machines. IEEE, 36–43.

[16] Philip E. Gill, Walter Murray, and Michael A. Saunders. 2005. SNOPT: An SQP
Algorithm for Large-Scale Constrained Optimization. SIAM Rev. 47, 1 (Jan. 2005),
99–131. https://doi.org/10.1137/S0036144504446096

[17] Paul Grigoraş, Pavel Burovskiy, Wayne Luk, and Spencer Sherwin. 2016. Op-
timising Sparse Matrix Vector multiplication for large scale FEM problems on
FPGA. In 2016 26th International Conference on Field Programmable Logic and
Applications (FPL). 1–9.

[18] Yunlong Huang, Keck Voon Ling, and Simon See. 2011. Solving Quadratic Pro-
gramming Problems on Graphics Processing Unit. ASEAN Engineering Journal 1,
2 (2011), 76–86.

[19] Juan Luis Jerez, George Anthony Constantinides, and Eric C. Kerrigan. 2011.
An FPGA Implementation of a Sparse Quadratic Programming Solver for Con-
strained Predictive Control. In Proceedings of the 19th ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays (Monterey, CA, USA)
(FPGA ’11). Association for Computing Machinery, New York, NY, USA, 209–218.
https://doi.org/10.1145/1950413.1950454

[20] Juan L. Jerez, Paul J. Goulart, Stefan Richter, George A. Constantinides, Eric C.
Kerrigan, and Manfred Morari. 2013. Embedded Predictive Control on an FPGA
using the Fast Gradient Method. In 2013 European Control Conference (ECC).
3614–3620. https://doi.org/10.23919/ECC.2013.6669598

[21] Juan L. Jerez, Paul J. Goulart, Stefan Richter, George A. Constantinides, Eric C.
Kerrigan, and Manfred Morari. 2014. Embedded Online Optimization for Model
Predictive Control at Megahertz Rates. IEEE Trans. Automat. Control 59, 12 (2014),
3238–3251. https://doi.org/10.1109/TAC.2014.2351991 arXiv:1303.1090

[22] Juan L. Jerez, K. V. Ling, George A. Constantinides, and Eric C. Kerrigan. 2012.
Model Predictive Control for Deeply Pipelined Field-Programmable Gate Array
Implementation: Algorithms and Circuitry. IET Control Theory and Applications
6, 8 (2012), 1029–1041. https://doi.org/10.1049/iet-cta.2010.0441

[23] Can B. Kalayci, Okkes Ertenlice, and Mehmet Anil Akbay. 2019. A comprehensive
review of deterministic models and applications for mean-variance portfolio
optimization. Expert Systems with Applications 125 (2019), 345–368.

[24] Srinidhi Kestur, John D Davis, and Eric S Chung. 2012. Towards a universal
FPGA matrix-vector multiplication architecture. In 2012 IEEE 20th International
Symposium on Field-Programmable Custom Computing Machines. IEEE, 9–16.

[25] Danylo Malyuta, Taylor P. Reynolds, Michael Szmuk, Thomas Lew, Riccardo
Bonalli, Marco Pavone, and Behçet Açıkmeşe. 2022. Convex Optimization for
Trajectory Generation: A Tutorial on Generating Dynamically Feasible Trajec-
tories Reliably and Efficiently. IEEE Control Systems Magazine 42, 5 (Oct. 2022),
40–113. https://doi.org/10.1109/MCS.2022.3187542

[26] Ian McInerney, George A Constantinides, and Eric C Kerrigan. 2018. A sur-
vey of the implementation of linear model predictive control on FPGAs. IFAC-
PapersOnLine 51, 20 (2018), 381–387.

[27] Maxim Naumov, L Chien, Philippe Vandermersch, and Ujval Kapasi. 2010. Cus-
parse library. In GPU Technology Conference.

[28] Peter Nystrup, Stephen Boyd, Erik Lindström, and Henrik Madsen. 2019. Multi-
period portfolio selection with drawdown control. Annals of Operations Research
282, 1-2 (2019), 245–271.

[29] Michel Schubiger, Goran Banjac, and John Lygeros. 2020. GPU acceleration of
ADMM for large-scale quadratic programming. J. Parallel and Distrib. Comput.
144 (2020), 55–67.

[30] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. 2020. OSQP: an
operator splitting solver for quadratic programs. Mathematical Programming
Computation 12, 4 (2020), 637–672. https://doi.org/10.1007/s12532-020-00179-2

[31] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance
Computing on the Intel® Xeon Phi™. Springer, 167–188.

[32] Leiming Yu, Abraham Goldsmith, and Stefano Di Cairano. 2017. Efficient Convex
Optimization on GPUs for Embedded Model Predictive Control. In GPGPU-10
Proceedings of the General Purpose GPUs. Austin, TX, US, 12–21. https://doi.org/
10.1145/3038228.3038234

[33] Jacob Ziv and Abraham Lempel. 1978. Compression of individual sequences
via variable-rate coding. IEEE transactions on Information Theory 24, 5 (1978),
530–536.

https://doi.org/10.1007/978-3-642-12133-3_17
https://doi.org/10.1109/MED.2013.6608929
https://doi.org/10.1109/MED.2013.6608929
https://doi.org/10.48550/arXiv.2209.13049
https://doi.org/10.48550/arXiv.2209.13049
https://arxiv.org/abs/2209.13049
https://doi.org/10.23919/ECC51009.2020.9143666
https://doi.org/10.23919/ECC51009.2020.9143666
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1145/1950413.1950454
https://doi.org/10.23919/ECC.2013.6669598
https://doi.org/10.1109/TAC.2014.2351991
https://arxiv.org/abs/1303.1090
https://doi.org/10.1049/iet-cta.2010.0441
https://doi.org/10.1109/MCS.2022.3187542
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1145/3038228.3038234
https://doi.org/10.1145/3038228.3038234

	Abstract
	1 Introduction
	2 Background
	2.1 The OSQP algorithm
	2.2 Solving the KKT system

	3 The RSQP Framework
	3.1 Processing Architecture Overview
	3.2 Customizable Data Paths within the SpMV Engine
	3.3 Aligning the SpMV Results
	3.4 Compressed Vector Buffers
	3.5 Control
	3.6 Customization Evaluation Metric

	4 Problem-specific Customization
	4.1 String Representations of Sparsity Structure
	4.2 Optimizing Ep
	4.3 Optimizing Ec
	4.4 Adapting the Problem Structure
	4.5 Architecture Generation

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Performance Evaluation
	5.3 Microarchitectural Performance and Area Trade-off
	5.4 Power Efficiency Comparison

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

