
©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/MICRO61859.2024.00115

Multi-Issue Butterfly Architecture for Sparse
Convex Quadratic Programming

Maolin Wang
The Hong Kong University
of Science and Technology

maolinwang@ust.hk

Ian McInerney
Imperial College London

i.mcinerney17@imperial.ac.uk

Bartolomeo Stellato
Princeton University

bstellato@princeton.edu

Fengbin Tu
The Hong Kong University
of Science and Technology

fengbintu@ust.hk

Stephen Boyd
Stanford University
boyd@stanford.edu

Hayden Kwok-Hay So
University of Hong Kong

hso@eee.hku.hk

Kwang-Ting Cheng
The Hong Kong University
of Science and Technology

timcheng@ust.hk

Abstract—Convex quadratic optimization solvers are exten-
sively utilized in various domains; however, achieving optimal
performance in diverse situations remains a significant challenge
due to the sparse nature of objective and constraint matrices.
General-purpose architectures struggle with hardware utilization
when performing critical sparse matrix operations, such as fac-
torization and multiplication. To address this issue, we introduce
a pipelined spatial architecture, Multi-Issue Butterfly (MIB),
which supports all primitive scalar, vector, and matrix operations
required by the Alternating Direction Method of Multipliers
(ADMM) based solver algorithm.

The proposed architecture features a butterfly computational
network with innovative working modes for each node, controlled
by runtime instructions. We developed a companion scheduling
method for matrix operations based on their sparsity patterns.
For factorization, an elimination tree guides the network in-
structions reordering to avoid data hazards caused by com-
putation dependencies. For matrix-vector multiplication, data
prefetching resolves structural hazards caused by read and write
conflicts to register files. Instructions without hazards are issued
simultaneously to increase pipeline throughput and function unit
utilization.

We evaluate the proposed architecture using FPGA prototypes,
representing the first fully FPGA-based generic QP solver. Our
assessment includes extensive performance and efficiency bench-
marks across 100 QP problems from five application domains.
Compared to the same algorithm variation running on CPU
backends, our prototype achieves a geometric mean of 30.5× end-
to-end speedup, 127.0× greater energy efficiency, and 16.5× less
runtime jitter. In comparison to GPU backends, the prototype
attains a geometric mean of 4.3× faster end-to-end speedup,
21.7× higher energy efficiency, and 33.4× less runtime jitter.

Index Terms—convex optimization, quadratic programming,
out-of-order instruction issue, FPGA

I. INTRODUCTION

Convex quadratic optimization or Quadratic Programming
(QP) is an essential mathematical optimization technique
with immense significance across numerous fields. Various
applications of QP can be found in diverse domains, such as
extracting neural activities from in vivo calcium imaging [16],

This research was supported by ACCESS – AI Chip Center for Emerging
Smart Systems, sponsored by InnoHK funding, Hong Kong SAR.

modeling sensor fusion problems in visual-inertial odometry
[10], performing backtesting in portfolio optimization, which
involves solving millions of quadratic programming problems
in a day [8], and as the subproblem inside the popular Sequen-
tial Quadratic Programming method for solving general non-
linear optimization problems [7]. QPs can also be embedded
in deep neural networks, replacing convolutional or fully
connected layers to model more complex data dependencies
[1], [3]. Quadratic programming with n decision variables and
m constraints can be formulated as

minimize (1/2)xTPx+ qTx (1a)

subject to l ≤ Ax ≤ u, (1b)

where x ∈ Rn is the vector of decision variables, the positive
semi-definite matrix P ∈ Sn+ and vector q ∈ Rn define the
objective, and the matrix A ∈ Rm×n and vectors l, u ∈ Rm

describe the constraints.
The success of applications relying on QPs heavily depends

on the speed and energy efficiency of solvers. For instance, ap-
plying Model Predictive Control to systems with millisecond-
scale sampling periods, such as power converters [33] or
turbomachinery [43], requires solving a QP after each sensor
sample to compute the next control command and require a
deterministic solver runtime to ensure stability by guaranteeing
the control command is applied before the next sensor sample,
while other applications like financial backtesting [14] require
solving sets of hundreds of QPs with varying parameters every
hour/day to optimize investment portfolios.

After transforming [15] the original problems from various
domains into the standard QP formulation shown in (1),
the inherent structures of specific application domains are
preserved as sparsity patterns of the objective matrix P and
constraint matrix A, which are defined by the locations of non-
zero values within them. The sparse nature of the objective and
constraint matrices poses a significant challenge in efficiently
accelerating the solver algorithm. The requirements for effec-
tively accelerating the core operations in the solver algorithm,

https://doi.org/10.1109/MICRO61859.2024.00115

primarily sparse matrix factorization and multiplication, will
vary for each problem.

Solvers running on general-purpose platforms like CPUs
[38] and GPUs [35] experience low hardware utilization due
to the high sparsity ratio (usually over 99% zeros) and irreg-
ular sparsity patterns of problem matrices. To achieve strict
performance goals in terms of speed, energy efficiency, and
reliability, applications can utilize custom hardware solvers
[9], [20], [22], [23], [26] that take advantage of prior knowl-
edge of matrix structures for specific problems. While this
approach delivers the necessary performance, designing cus-
tomized solvers demands significant hardware expertise, and
the resulting hardware solver may not be easily transferable
between application domains.

In this work, we propose a pipelined spatial architecture
that enables sparse pattern-specific acceleration of core matrix
operations without sacrificing flexibility. The proposed archi-
tecture features a computational network design in which each
node can be controlled through instructions for either computa-
tion or routing. The design employs a butterfly topology, which
allows for the integration of various primitive sparse operations
within a single clock cycle, thus improving spatial utilization.
Additionally, we develop companion instruction scheduling
addressing structural and data pipeline hazards and improve
temporal utilization. By temporally and spatially interleaving
network instructions, our architecture achieves compile-time
sparsity specificity for matrix multiplication and factorization
with various sparsity patterns, making it suitable for solving
QP workloads with diverse sparse structures.

We present an FPGA-based prototype system using this
architecture, and a complete compiler stack for mapping ap-
plications to the best possible variation of the solver algorithm
and performing out-of-order instruction scheduling based on
the sparsity structure of the problem. This prototype is the first
fully FPGA-based generic QP solver.

We conducted extensive performance and efficiency bench-
marks across a wide range of applications to show the general-
izability and efficiency of the proposed architecture. Compared
to the same algorithm variation running on CPU backends,
our prototype achieves a geometric mean of 30.5× end-to-
end speedup, 127.0× greater energy efficiency, and 16.5× less
runtime jitter. When compared to GPU backends, the prototype
attains a geometric mean of 4.3× faster end-to-end speedup,
21.7× higher energy efficiency, and 33.4× less runtime jitter.

The remainder of this paper is organized as follows: Sec-
tion II introduces two solver algorithm variations and their
computational characteristics. Section III presents our archi-
tecture design that supports the core operation set required
for different algorithm variations. Section IV describes the
multiple-instruction issuing for scheduling sparse operations
on the proposed architecture. Section V evaluates our FPGA-
based prototype across a wide range of applications. Section
VI discusses related works on the acceleration of relevant
solver algorithms. We conclude our work in Section VII.

Algorithm 1 OSQP algorithm
1: given:

initial values x0, z0, y0 and parameters
ρ > 0, σ > 0, α ∈ (0, 2)

2: repeat
3: solve[

P + σI AT

A −ρ−1I

] [
x̃k+1

νk+1

]
=

[
σxk − q

zk − ρ−1yk

]
(2)

4: z̃k+1 ← zk + ρ−1(νk+1 − yk)
5: xk+1 ← αx̃k+1 + (1− α)xk

6: zk+1 ← Π(αz̃k+1 + (1− α)zk + ρ−1yk)
7: yk+1 ← yk + ρ(αz̃k+1 + (1− α)zk − zk+1)
8: until the termination criterion is satisfied

II. THE QP SOLVER ALGORITHM

Our work employs the method used in the Operator Splitting
Quadratic Program (OSQP) solver [38], which is based on the
alternating direction method of multipliers (ADMM) and is
well-suited for both embedded and large-scale optimization
problems. In this section, we introduce two variations of the
algorithm with distinct computational characteristics suitable
for different application scenarios. Additionally, we outline
the core operation set and break it down to four primitive
computation patterns that govern the runtime of these two
variations.

• Multiplication and Accumulation (MAC)
• Permute vector elements across register files
• Column elimination
• Element-wise multiplication, addition and subtraction, etc

A. Overview

To solve the QP (1), OSQP introduces a new decision
variable z ∈ Rm to convert the inequality constraint (1b)
into the pair of equality/inequality constraints Ax = z and
l ≤ z ≤ u, and then introduces two auxiliary variables, x̃ ∈ Rn

and z̃ ∈ Rm. The steps of the OSQP algorithm then consist of
alternating between solving two subproblems: (i) solving an
equality-constrained QP by solving the linear system (2), and
(ii) the Euclidean projection Π(·) of z onto the new inequality
constraint set z ∈ [l, u].

The first subproblem is formed using the Lagrange multi-
plier method, with y, v ∈ Rm the Lagrange multipliers of the
constraints, to form the equality-constrained QP

minimize (1/2)x̃TPx̃+ qT x̃+ (σ/2)∥x̃− xk∥22
+ (ρ/2)∥z̃ − zk + ρ−1yk∥22

subject to Ax̃ = z̃.

The optimal solution to this subproblem can be found by
solving the linear system (2), known as the KKT linear system
containing the KKT matrix K, defined as

K :=

[
P + σI AT

A −ρ−1I

]
. (3)

Input	𝑃, 𝑞, 𝐴, 𝑙, 𝑢

Solve 𝐾

PCG LDL

Converged? Update 𝜌?

Re-factor 𝐾?

Solution 𝑥

𝐾 = 𝐿𝐷𝐿!

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

?

?

?

?

?

?

?

?

?

?

1

1

1

1

1

1

1

1

1

1

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Factor

=

Matrix Vector Multiplication Solve Triangular Systems Vector Operation

dot

. +

. −

.×
max

min

= =

1

2 3 4

2 4 3 1

Update 𝑥, 𝑧, 𝑦
& 𝜌 Estimation

2 4

DirectlyIndirectly

Y

N
Y

Y

N

N

Fig. 1. The left part shows the computation flow of the solver algorithm. The right part shows the bottleneck operation set.

The introduction of the step size parameters ρ > 0 and
σ > 0 by OSQP ensures that K always has full rank,
and therefore (2) always has a solution. The values of σ
and ρ impact the convergence speed of the solver, and their
optimal values may vary based on the problem, therefore
OSQP periodically adjusts the step size ρ while running to
ensure a fast convergence of the overall algorithm.

The OSQP algorithm and its simplified computation flow
can be seen in Algorithm 1 and Figure 1, respectively, with
more details in [38]. It is important to note that solving the
KKT linear system (2) is the most computationally demanding
step, and that the sparse structure of K presents a significant
challenge for efficient hardware acceleration of this step.

B. Application-specific Sparsity Patterns

The sparsity of the problem matrices arises from the in-
herent structure of specific application domains. The sparsity
pattern of the matrix remains constant across various problem
instances, despite differences in numeric values. Take for
example portfolio optimization, where the objective is to op-
timize the risk-adjusted return of the portfolio. The weight of
each asset is represented by x ∈ Rn, while the expected return
of each asset is denoted by µ. The risk aversion parameter is
represented by γ, and the correlation among different assets,
along with the asset-specific risk, is indicated by D ∈ Rn×n.
The factor load matrix is represented by F , and factors are
denoted by y. The base form of the portfolio optimization
problem is then

minimize xTDx+ yT y − γ−1µTx (4a)

subject to 1Tx = 1, (4b)

y = FTx, (4c)
x ≥ 0, (4d)

where the first constraint ensures the normalization of the
portfolio (the sum of all asset weights equals 1), the second
employs a factor model, denoted by FT , to represent the
correlation among assets, and the third prohibits short selling.

𝑥 ≥ 0

𝟏!𝑥 = 1

𝐹!

Fig. 2. Sample sparsity pattern from the portfolio optimization domain. This
pattern is constant across different problem instances.

After transforming the problem into the standard QP for-
mulation shown in (1), the three constraints are preserved as
distinct blocks in the matrix A, which is further embedded into
K. The sparsity of this combined block structure is shown in
Figure 2, where the overall A matrix is a half-arrow format
with a block of rows at the top and values along a diagonal.
The determination of the optimal portfolio requires solving
millions of QPs, each with a distinct γ. Note that the sparsity
patterns of matrices are constant across all problem instances.

The structure and sparsity pattern of the A matrix for various
domains are shown in the top row of Figure 3. Based on the
sparsity ratio and the sparsity pattern of K in the different
domains, we can choose to solve the KKT linear system either
directly or indirectly, resulting in two variations of OSQP.

C. OSQP-Direct: Factorization-based KKT Solver

The direct method of solving (2) factors K into the form
LDLT , with L lower triangular and D diagonal, using the
LDL decomposition. This factorization can be done recur-
sively using an up-looking factorization that grows L row by
row. Assuming we know the factorization of the (n − 1) ×
(n − 1) submatrix K11 = L11L

T
11, the original factorization

can be rewritten in a block matrix format as shown in (5).
The factors L can then be found by solving for l22, d22 and

l12, where l22 =
√
k22 − lT12l12, l12 comes from solving the

triangular system L11l12 = k12 for l12, and extracting d22. The
boundary case of the recursion n = 2 can be easily solved as
L11 is a scalar.[

L11 0
lT12 l22

] [
D11 0
0 d22

] [
LT
11 l12
0 l22

]
=

[
K11 k12
kT12 k22

]
(5)

In the sparse case, The LDL factorization is split into two
parts: (i) the symbolic factorization that uses the sparsity pat-
tern of K to compute the location of the non-zero entries in L,
and (ii) the numeric factorization that actually computes all the
non-zero entries in L and D. Once the numeric factorization
is computed, the solution to the original linear system can
be easily found through forward-backward substitution using
two triangular system solvers. Since ρ is a component of the
KKT matrix K, whenever ρ is updated during the ADMM
iterations, K needs to be numerically refactored again (but
not symbolically refactored).

The dominant operation within this factorization is solving
triangular linear systems, where the dimension of the system
grows by one in each iteration. There are two ways of solving
the triangular linear systems: row-based and column-based.

Consider solving the n × n example in (6) in a row-based
manner. The solution vector x can be computed sequentially
using substitution, and so to compute x1, we only need to
consider the first row of L, which contains only one non-zero
element. Once x1 is determined, we can substitute its value
into the equation related to the second row of L to compute
x2. 

1 0 0 0 · · · 0
l21 1 0 0 · · · 0
l31 l32 1 0 · · · 0
l41 l42 l43 1 · · · 0
...

...
...

...
. . . 0

ln1 ln2 ln3 ln4 · · · 1





x1

x2

x3

x4

...
xn


=



b1
b2
b3
b4
...
bn


(6)

This process can be continued for the remaining rows of
L until all the elements of x are computed. Step i of row
substitution requires access to the ith element of b and the i
previously computed elements of x. Since we utilize the LDL
factorization, we can assume all the diagonal elements of L
are 1, and then express the ith step as

xi = bi −
i−1∑
j=1

lijxj . (7)

Multiplication and accumulation are therefore the major op-
erations involved in the row-based method.

Alternately, the substitution can also be done in a column-
based manner. In this case, (7) can be written as the set of
equations (8) to (12). Instead of computing these equations
in sequence, we can also group computation in each equation
based on xi and then perform column substitution. The column
substitution for step i requires access to the last i elements of
b and the ith element of x. The parallel access to vector b is
crucial, and the problem can be modeled similarly to the access

Algorithm 2 Preconditioned Conjugate Gradient
1: given:

initial values x0 and preconditioner M
S := P + σI + ρATA
b := σxk − q +AT (ρzk − yk)
r0 := Sx0 − b, d0 := M−1r0, p0 := −d0

2: repeat
3: λi+1 ← (ri)T di

(pi)TSpi

4: xi+1 ← xi + λipi

5: ri+1 ← ri + λiSpi

6: di+1 ←M−1ri+1

7: µi+1 ← (ri+1)T di+1

(ri)T di

8: pi+1 ← −di+1 + µi+1pi

9: i← i+ 1
10: until ||ri|| < ϵ||b||

to vector x in the row substitution case. Column elimination
in the following equations is the major operation involved in
the column-based method.

x1 = b1 (8)
x2 = b2 − l21x1 (9)
x3 = b3 − l31x1 − l32x2 (10)
x4 = b4 − l41x1 − l42x2 − l43x3 (11)
· · · (12)

D. OSQP-Indirect: PCG KKT Solver

Alternatively, we can solve the KKT system (2) using
an iterative method, such as the Preconditioned Conjugate
Gradient (PCG), giving the OSQP-indirect solver variant. The
quasi-definite KKT matrix (3) can be reduced to a positive
definite matrix through block elimination, forming

S := (P + σI + ρATA),

which then forms a positive definite linear system that can be
solved using the PCG shown in Algorithm 2.

An iteration of PCG requires a matrix-vector product with
S, and other vector operations such as element-wise multipli-
cation and dot product computation. When using the PCG to
solve the KKT system (2), S should never be explicitly com-
puted, since forming the matrix-matrix product ATA could
destroy any sparsity that the problem originally possessed and
require storing a dense matrix for S. Therefore, it is better
to store P , A, AT separately and then incrementally perform
the matrix-vector multiplication to compute the matrix-vector
product with S.

E. Core Matrix Operation Set

The core matrix and vector operations involved in the two
OSQP variants (with either the direct or indirect KKT solver)
are highlighted in the right part of Figure 1. To examine the
differences in total computation cost of these two variants
while solving optimization problems arising from different
domains, we analyze the computational characteristics of the

benchmark problems from [38], which encompass 100 real-
world QP problems from five application domains: portfolio
optimization, Lasso, Huber fitting, model predictive control
(MPC), and support vector machines (SVM). Each domain
includes 20 problems of varying scales, characterized by
the total number of non-zeros in matrices A and P . The
total floating-point operations (FLOPs) for the two algorithm
variants, as well as the breakdown of the core operations
broken down into the four primitive operations: multiplication
and accumulation (MAC), vector permutation across register
files, column elimination, and element-wise multiplication, are
shown in Figure 3.

From this, we can see that the different applications have
different operation profiles. For instance, for the OSQP-direct
solver variant, the portfolio optimization problem spends more
FLOPs on triangular system solves than the factorization,
while Huber fitting spends almost all its FLOPs on the
factorization and very little in the triangular solve. We can
also see that the variant requiring more FLOPs also depends
on the application, with LASSO and MPC using nearly the
same amount of FLOPs for both indirect and direct for some
problems, while portfolio optimization uses more for the
indirect and Huber fitting uses more for the direct variant.

Our goal in this work is to design a compute architecture
that allows the solver to efficiently support different appli-
cation sparsity structures without requiring static hardware
reconfiguration. In the next section, we introduce our novel
architecture design, which achieves sparsity pattern-specific
customization through temporal and spatial combinations of
these primitive operations.

III. ARCHITECTURE AND SYSTEM DESIGN

The high degree of sparsity of the problem matrices ren-
ders the core operation set highly memory-intensive. Modern
memory technologies, like High Bandwidth Memory (HBM),
provide substantial bandwidth capacity and reduced power
consumption through 3D stacking. However, to achieve this
high bandwidth, contiguous data access patterns are necessary.
The irregular data flow of sparse matrix operations in solver
algorithms poses considerable challenges for architectural de-
sign.

Consider the case of multiplication within the core operator
set, where the matrices and vectors to be multiplied are stored
in the HBM. The matrix is usually stored in a compressed
format, such as Compressed Sparse Column (CSC), which
allows for contiguous access to non-zero values. However,
vector access becomes random in this situation, leading to
a slowdown in overall throughput. The primary objective of
high-performance architectural design is to ensure both access
patterns are contiguous and fully utilize the available memory
bandwidth.

A. Baseline architecture for the MAC primitive

We begin with a baseline architecture supporting the MAC
primitive operation, as depicted in Figure 4. The vector ele-
ments are distributed to various register files in advance via

a network, enabling random access capability. A multi-mode
MAC tree is then utilized to accumulate partial sums of the
multiplication of one matrix row with the vector, or whole
sums of multiple rows that are less than the width of the MAC
tree. Another routing network aligns the varying number of
accumulation results produced during each clock cycle.

Letting the maximum number of data items that can be
obtained from the HBM in every clock cycle be C under the
contiguous access pattern, we use this as the unified scalability
parameter to control the width of all architecture components.
Different widths can be instantiated to achieve a trade-off
between resource usage and performance.

The yellow connections within the MAC tree can be added
or removed at hardware design time to provide static cus-
tomization for multiplication operations for matrices with spe-
cific sparsity patterns. Instantiating all the yellow connections
leads to the best MAC throughput per clock cycle for all pos-
sible matrix sparse patterns. However, this increases routing
difficulties and may lead to a drop in the max frequency.

The input and output alignment networks execute high-
throughput C-to-C permutations to preserve the contiguous
access pattern to the HBM. A widely-used butterfly structure
is adopted for the input and output network topology, as it
can efficiently manage various permutation workloads with
minimal connection complexity. With only two input and
output connections for each node in every stage, this topology
offers easy scalability.

B. Computational Network Design for All Primitives

We enhance the baseline design to accommodate all primi-
tive operations, not just MAC, by leveraging a key observation:
the butterfly topology inherently supports the multi-mode
MAC tree structure.

This insight inspired our computational network design,
which supports all the primitives required by the core operation
set. As depicted in Figure 5a, each node in our proposed
network can operate in four different modes during runtime.
This design allows us to integrate the MAC tree within
the butterfly network and consolidate the three architecture
components shown in the right part of Figure 4.

As illustrated in Figure 5b, the resulting architecture design
enables fine-grained, instruction-based control during runtime.
Each adder node can function in one of four modes, while
input and output multiplier nodes can be bypassed if needed.
By issuing network instructions alongside data items from the
HBM, the network can be adapted to support all primitive
operations.

C. Network Instruction for Primitive Instructions

In every cycle, C items are selected from random locations
within each register files (R0, R1, ..., RC) and enter
the network. The addresses of the items are specified by the
network instructions. These items undergo logC processing
stages before being written back to random locations in
their respective banks. Utilizing a fully pipelined design, the

Support Vector Machine Model Predictive Control Portfolio Optimization Huber Fitting LASSO
FL

O
P

C
ou

nt
O

SQ
P-

di
re

ct
B

re
ak

do
w

n

OSQP-indirect OSQP-direct

Matrix Factorization Matrix Vector Multiplication Solve Triangular Systems Vector Operations

O
SQ

P-
in

di
re

ct

B
re

ak
do

w
n

Ex
am

pl
e

Sp
ar

se
 P

at
te

rn
s

Fig. 3. The top row shows the sparsity patterns that will be shared across problem instances in different domains. The second row shows the total FLOPS
count of the two solver algorithm variants. The third and fourth row shows the FLOPS breakdown of different operations.

network efficiently processes C items per clock cycle, with a
delay of logC.

To accommodate all potential network configurations,
2C logC bits are required, with each node necessitating 2 bits
of control information to select from four operations: pass
cross, pass direct or pass the sum of cross and direct. By
restricting the network to execute only a select few common
computation patterns, the number of bits needed for high-level
control can be significantly reduced. The control bits for these
patterns can be stored on-chip and replayed to the network
upon receiving high-level network instructions.

Figure 6 illustrates the four primitive operations executed
by the network. To determine the control signal needed for
various operations, the network inputs and outputs are initially
encoded using the binary representation of their locations.
With 8 inputs and outputs, each location requires 3 bits for
encoding. For instance, if we want x0 at input location 0
to be routed to output location 3, as shown in Figure 6(c),
we perform the xor operation between the input and output
encodings. The resulting control signal, 011, is required for

each hop node. The LSB 1 indicates that the first network stage
should be set in pass-cross mode, while the MSB 0 signifies
that the final network stage should be set in pass-direct mode.
The control signals for the remaining input-output pairs are
calculated similarly using the xor operation.

For the MAC operation depicted in Figure 6a, all network
inputs share the same output location. First, we compute
the control signal using the xor operation and set the node
collides to pass-sum work mode. For instance, input x0 and
x1 collides at the second node (marked in orange) at H1, so
we designate it as pass-sum. The network topology ensures
that if two inputs have the same destination, they will follow
the same path after the first collision node. The remaining
pass-sum nodes are marked based on calculated collisions
as well. It is important to note that MAC can write back
to any memory bank and perform output alignment during
accumulation. Similarly, column elimination in Figure 6b can
select x0 from any bank and distribute it. The example in
the figure demonstrates the case where C = 8. The network
can be scaled up to C = 16, 32, 64, ... to increase parallelism.

HBM

log
! 𝐶

+
1

𝐶

(1)	Vector Input Distribution

(3)	Vector Output Alignment

Matrix
Non-zeros

log
! 𝐶

+
1

log
! 𝐶

+
1

(2)	Multi-mode
MAC Tree

Random
Address

Fig. 4. The baseline architecture for the MAC primitive. The green arrow
represents the contiguous data flow from HBM. The orange data path involves
random data access.

Networks with a bigger C require larger bandwidth provided
by more HBM channels. Note that each node in the network
has two fan-in and two fan-out connections, regardless of the
C. This property allows for easy scaling of the network width,
given enough HBM channels.

D. Programming Model

We developed a two-level instruction set integrated with a
compiler framework to map various solver algorithms onto our
proposed architecture. Table I lists the top-level instructions
required to execute the solver algorithm entirely on this
architecture. The compiler accepts both the solver algorithm
representation and the sparsity patterns of problem matrices
as input.

To facilitate the migration of existing solver C code to
our architecture, we adopted a custom C format to represent
algorithm computation flow. Listing 1 provides an example of
the source program. For simplicity, some function arguments
related to the lengths and addresses of vectors and matrices
are omitted. The source file compiles into top-level instructions
that operate on entire matrices and vectors. These instructions

Reg

Control00 01 11 10

Direct
Cross

Direct Cross

01 Pass
Direct

Reg

10 Pass
Cross

Reg

11 Pass
Sum

Reg

00 Pass
Stored

Reg

Random
Address

HBM

N
et

w
or

k
In

st
ru

ct
io

ns

Ra
nd

om
 W

rit
e

Contiguous Write

Contiguous
Read

Four working mode of each node

R0 R1 R2 RC…

𝐶

log
! 𝐶

+
1

Fig. 5. Computational network supporting all the primitives required by the
core operation set. Each multi-mode node, as depicted in the top left, features
two inputs and two outputs, labeled as ’direct’ and ’cross’. Depending on
the network instruction, both outputs are broadcasted either with the ’direct’
input, the ’cross’ input, or the sum of both.

execute sequentially, performing matrix and vector operations
one by one. The top-level program is shared across different
problem domains and doesn’t need to be recompiled.

1 void main(){
2 /* defining network instructions to be scheduled */
3 net_schedule permutate, inverse_permutate;
4 net_schedule L_solve, Lt_solve, D_solve;
5 net_schedule A_multiply;
6 /* defining vectors */
7 vectorf xtilde_view, ztilde_view, prev_x, data_q;
8 /* defining scalars */
9 float prim_res, dual_res, sigma;

10 /* vector operations */
11 xtilde_view = sigma * prev_x - data_q;
12 /* matrix multiplication */
13 load_vec(xtilde_view, ..., ...);
14 net_compute(A_multiply, ...);
15 write_vec(ztilde_view, ..., ...);
16 /* solving the triangular system*/
17 load_vec(xtilde_view, ..., ...);
18 load_vec(ztilde_view, ..., ...);
19 net_compute(permutate, ...);
20 net_compute(L_solve, ...);
21 net_compute(D_solve, ...);
22 net_compute(Lt_solve, ...);
23 net_compute(inverse_permutate,);
24 write_vec(xtilde_view, ..., ...);
25 write_vec(ztilde_view, ..., ...);
26 }

Listing 1. An example source program.

The sparsity patterns of the problem matrices are provided
as input to the compiler for low-level network instruction
scheduling. The keyword net_schedule in the source pro-
gram specifies the sparsity pattern to be exploited. Top-level

(𝑎)	MAC (𝑏)	Column Elimination

(𝑐)	Shuffle (𝑑)	Element-wise Add

𝑥!

𝑙",! 𝑙$,! 𝑙%,! 𝑙&,! 𝑙',! 𝑙(,! 𝑙),! 𝑙*,!

𝑙*,! 𝑙*," 𝑙*,$ 𝑙*,% 𝑙*,& 𝑙*,' 𝑙*,(𝑙*,)
𝑥! 𝑥" 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(𝑥)

∑

𝑥! 𝑥!′ 𝑥" 𝑥"′ 𝑥$ 𝑥$′ 𝑥% 𝑥%′𝑥! 𝑥" 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(𝑥)

𝑥' 𝑥(𝑥) 𝑥! 𝑥" 𝑥$ 𝑥% 𝑥&

1

1

0

H1

H2

H3

H1

H2

H3

Fig. 6. The network instructions for primitive operations are computed offline.
The overall network program will be fed into the network together with the
data items.

TABLE I
INSTRUCTION SET

Instruction Inputs Computation

norm_inf v1 |v1|∞
cond_set s0, s1, v0, v1 set vector values
ew_reci v0 element-wise reciprocal
ew_prod v0 element-wise product
axpby s0, s1, v0, v1 s0v0 + s1v1
select_min v0, v1 select max
select_max v0, v1 select min

net_compute n0, a0 network compute
load_vec v0, s0, a0 vector HBM to register files
write_vec v0, s0, a0 vector register files to HBM

instructions involving our computation network are decom-
posed into numerous low-level network instructions. These
network instructions leverage sparsity patterns in various
optimization problems, coordinating the working modes of
all nodes within the unified computation network. Multiple-
issue and re-ordering of network instructions are essential for
achieving rapid end-to-end solver run times. We will explore
these concepts in greater detail in the following section.

IV. NETWORK INSTRUCTION SCHEDULING

There is a significant amount of instruction-level parallelism
available in the core operation set of network processing.
For instance, the calculation of distinct rows in matrix-vector
multiplication (line 14 in Listing 1) can be executed inde-
pendently. Additionally, the permutation of the right-hand side
vector elements across various register files can be parallelized
both before and after solving triangular systems (line 19 and
line 23 in Listing 1).

To increase the instruction throughput, we need to tackle
the structural and data hazard when issuing multiple network
instructions together. The scheduling problem in our proposed
architecture resembles classic multi-issue pipeline processors
[19], [36]. In this work, we mainly explore the static schedul-
ing style and leave dynamic scheduling to future work.

A. Structural and Data Hazards

We demonstrate two types of pipeline hazards in our
proposed architecture, as shown in Figure 7. We use the
notation I(t, n)(Ri,...)→→(Rj,...) to represent the
nth network instruction issued at clock cycle t, which reads
from register files (Ri,...) and writes to register files
(Rj,...). Structural hazards occur due to conflicting access
to hardware resources, such as register files or nodes within the
network. For instance, both I(N+1,1) and I(N+1,2) need
to read from R4, but R4 can only supply one item per clock
cycle. This conflict can be resolved through data prefetching.
We can search previous instruction slots and insert a data
prefetching instruction, such as I(1,3), to move the operand
to R3 beforehand. Then, I(N+1,1) can be rewritten to access
R3 instead, avoiding conflict with I(N+1,2).

A similar structural hazard can occur when writing to the
same output register, such as I(N+2,1) and I(N+2,2). A
comparable solution involves rerouting the entire I(N+2,1)
to write to a temporary location like R3 instead, and appending
a data prefetching instruction at a later clock cycle when R4 is
unoccupied to write the temporary result back to the original
destination. It is worth noting that our architecture can execute
these data prefetching instructions without incurring additional
hardware costs.

Data hazards occur due to computational dependencies
among network instructions. A network instruction’s input
might not be readily available due to pipeline delays. For
example, I(N+2,2) needs to read the result of I(N+1,2),
but it won’t be available until N+4. To resolve this, empty
instructions can be inserted before the instruction until the
result is available. The empty instruction slots can be filled by
other independent instructions or data prefetching instructions.

B. The Scheduling Strategy for OSQP-indirect

The OSQP-indirect variant is mostly composed of matrix-
vector multiplication instructions as shown in Figure 3. Note
that we need to multiply AT and A, so the multiplication
of A is performed with the MAC primitive instruction and
AT is performed with column elimination instruction. Sparsity
patterns like the diagonal constraints as shown in Figure 2 are
compiled to short network instructions whose widths are less
than the hardware network width. Structural hazards are the
major obstacles to issuing multiple short network instructions
together.

We use bin packing to model the instruction scheduling
problem. The hardware resource request of each network in-
struction is encoded as a binary vector of length C(log2 C+1).
This vector marks the usage of every node in the network. We

1 2 3 4 N+1 N+2 N+3 N+4 N+5

Clock
Cycles

Instruction order

Input
Structural Hazard

Data
hazard

I(1,1) (R0, R1, R2, R3)→(R1)

I(1,2) (R5, R6, R7)→(R2)

I(1,3)(R4)→(R3)
Data Prefetching

I(N+1,2) (R4, R5, R6, R7)→(R7)

I(N+1,1) (R0, R1, R2, R4)→(R1)

I(N+2,2) (R4, R5, R6, R7)→(R4)

After Data Prefetching:
I(N+1,1) (R0, R1, R2, R3)→(R0)

I(N+2,1) (R0, R1, R2, R3)→(R4)

Output
Structural Hazard

R0

R1

R2

R3

R5

R6

R7

R4

R0

R1

R2

R3

R5

R6

R7

R4

Fig. 7. Different types of pipeline hazards.

use the First-Fit algorithm to solve the above bin packing prob-
lem and get a structural hazard-free solution. We start from
an initial schedule without multiple issuing. Then go through
this initial order from the beginning. For each instruction, we
find the first instruction slot that doesn’t have conflict with its
hardware occupancy vector. We repeat this process until the
last instruction. Figure 8 illustrates this spatial and temporal
interleave scheduling in detail.

C. The Scheduling Strategy for OSQP-direct

The matrix factorization and triangular solver instructions
face more data hazards. The associated data dependency
graph has orders of magnitude more edges compared to the
matrix multiplication case, as illustrated in the right part of
Figure 8 . The research community [2], [11]–[13], [17], [25]
has established systematic methods to analyze computation
dependencies in sparse matrix factorization. A data structure
known as the elimination tree [24], which is the spanning

tree of the data dependency graph, can greatly simplify this
dependency analysis. We use the elimination tree to get an
initial order that satisfies the computation dependencies. Then
apply the same first-fit scheduling method.

V. EVALUATION

A. System Setup

We create two prototypes of our proposed architecture on
the Xilinx Alveo U50 FPGA, with network widths of C = 16
and C = 32. This FPGA board has 872K LUTs, 1743K
Registers, 5,952 DSPs, and 8GB HBM. Figure 9 displays
the hardware resource usage percentages. The deep blue areas
represent device maps of unified computation networks. Due
to the misalignment between our proposed network’s butterfly
topology and the grid DSP layout on the FPGA, the network’s
floating-point adders and multipliers are mapped to LUTs and
Registers. This results in designs approaching the FPGA’s
maximum clock frequency of 300 MHz. In the future, the
increased layout flexibility provided by ASICs will enable the
implementation of larger network widths.

The prototypes are integrated into a system with QP solvers
running on other baseline architectures. For comparison, we
select the CPU and GPU models with similar process nodes.
The specifications can be found in Table II.

We conduct a comparison with the most recent heteroge-
neous solver, RSQP [42]. This solver enhances PCG perfor-
mance on the FPGA side, while the remainder of the solver
operates on the CPU side.

We also compared our prototypes with the state-of-the-art
open-sourced solvers OSQP [38] supporting both CPU and
GPU backends. OSQP can use either well-optimized linear
algebra libraries to accelerate the sparse matrix operations,
such as Intel’s Math Kernel Library (MKL) [41] on the CPU
and NVIDIA’s cuSparse library [28] on the GPU, or standard
built-in sparse matrix operations on the CPU (hand-coded
matrix operations and the QDLDL factorization).

At present, OSQP does not offer a direct solver with its GPU
backend. As demonstrated in [39], [40], GPU-based direct
solvers tend to perform poorly on optimization workloads,
yielding only a minor speedup or even a slowdown. For the
same reason, popular commercial QP solvers such as Gurobi
[21] and MOSEK [4] do not currently support GPU backends.

Our prototype’s software stack is constructed using an open-
source C compiler [6]. We have augmented the compiler’s
backend with our proposed instruction set, as presented in
Table I, enabling the generation of executable files for both
OSQP-direct and OSQP-indirect algorithms on our prototypes.
To address matrix sparsity patterns, we have further enhanced
the compiler by scheduling network instructions based on the
strategies outlined in Section IV. Moreover, we have developed
a performance profiling tool that examines the Intermediate
Representation (IR) produced by our compiler and integrates
runtime statistics, such as code block loop count, to generate
a comprehensive computational analysis of the two algorithm
variations, as depicted in Figure 3.

Clock cycle reduced through
spatial and temporal interleaving of network instructions

Clock Cycles

2072

Data Dependency Graph

271

19
2

19
2

Fig. 8. The top left section illustrates an example network program before reordering. This network program performs matrix multiplication for matrix A in
the SVM domain. Each column represents a network instruction that specifies the operating modes of all 192 nodes within the network, which has a width of
C = 32. On the right, each network instruction is depicted as a node in the data dependency graph, taking pipeline hazard constraints into account. Network
instructions without dependencies are omitted from the graph. The bottom left section displays the network program after reordering, which significantly
reduces total execution clock cycles from 2072 to 271.

TABLE II
ARCHITECTURE SPECIFICATIONS

Architecture This work This work RSQP [42] CPU GPU

Model C = 16 C = 32 Multiple i7-10700KF RTX 3070
Process 16 nm 16 nm 16 nm 14 nm 8 nm
Clock 300 MHz 236 MHz 94 to 236 MHz 3.80 GHz 1.75 GHz

FLOPS 33G 60G 8.9 to 15.1 G 500G 20T
Bandwidth 28.8GB/s 57.6GB/s 28.8 to 115.2 GB/s 45.8GB/s 448GB/s

TDP 75W 75W 75W 125W 220W
Library Ours Ours Custom MKL, QDLDL cuSparse

(𝑎) Prototype network width 𝐶 = 16 (𝑏) Prototype network width 𝐶 = 32

HBM
Ch 0

HBM
Ch 1

HBM
Ch 31

…HBM
Ch 2

HBM
Ch 3

14.4GB/s 14.4GB/s

Matrices, vectors, and
network instructions

HBM
Ch 0

HBM
Ch 1

HBM
Ch 31

…HBM
Ch 2

HBM
Ch 3

14.4GB/s 14.4GB/s

Matrices, vectors, and
network instructions

14.4GB/s 14.4GB/s

Fig. 9. Prototypes Resource Usage and Device Map

The input data for the problem and the compiled executable
are sent to the prototypes via PCIe. Once the solver algorithm
is complete, the prototypes return the results to the CPU. The
prototypes have no data communication with the CPU while
running the solver algorithm. RSQP [42] incurs additional
communication costs during every loop step in Algorithm 1, as
it transfers the linear system solution vector between the CPU

and FPGA, while the GPU backend [35] sends scalar values
from the GPU to the CPU multiple times per loop step to
execute the algorithm’s control flow operations. To assess the
advantages of the proposed architecture, we examine the end-
to-end solver speed, power efficiency, and timing reliability.

B. End-to-end Solver Run time

The compiler requires a few seconds to perform network in-
struction scheduling based on the sparsity pattern. Notably, the
sparsity pattern for each application remains constant across
different problem instances. For example, in the portfolio
optimization example discussed in Section II, millions of QPs
with the same sparsity pattern must be solved each trading
day [29]. Consequently, the time spent compiling the sparsity
pattern can be amortized over these numerous instances. RSQP
requires the reconfiguration of FPGA for different sparsity
patterns and will even incur longer compilation overhead.

Figure 10 shows the end-to-end solver algorithm run time
comparison of different platforms when solving 100 real-world
QP problems from different application domains. The solver
stops when both the primal and dual residual are below a
preset threshold. Compared to the OSQP-indirect running on
CPU backends, our prototype (C = 32) achieves a geometric
mean of 30.5× end-to-end speedup. When compared to the
GPU backend, the prototype attains a geometric mean of
4.3× end-to-end speedup. In the case of OSQP-direct, our

TABLE III
IMPROVEMENT OF THE PROPOSED SOLVER OVER OSQP ON CPU AND GPU

Variant Baseline End-to-end runtime
speedup

Device
Energy

Efficiency

System
Energy

Efficiency

Jitter
reduction

OSQP-indirect
GPU (cuSparse) 4.3× 21.7× 9.5× 33.4×

CPU (MKL) 30.5× 127.0× 37.3× 16.5×
RSQP 9.5× N/A N/A N/A

OSQP-direct CPU (QDLDL) 2.7× 11.2× 3.3× 13.8×

prototype achieves a geometric mean of 2.7× end-to-end
speedup compared with the CPU with QDLDL. We also
include the solver run times for the best architectures generated
by RSQP across different application domains. Our solution
outperforms RSQP in all domains, achieving a geometric mean
end-to-end speedup of 9.5×. This significant improvement
is primarily due to the elimination of communication costs
between the CPU and the FPGA at each ADMM iteration.

We employ the peak FLOP utilization of each platform as a
normalized indicator of architectural efficiency. Our proposed
architecture attains a higher overall utilization compared to the
CPU and GPU, resulting in a faster solver performance despite
having a lower peak FLOP capability.

C. Power Efficiency

We utilize the number of problems solved per second
per watt as a normalized indicator for the power efficiency
across the different platforms. The power consumption of the
CPU, GPU, and our prototypes are measured using the com-
mand line tools powertop, nvidia-smi, and xbutil,
respectively. Each problem is executed 20 times recording
the average power trace to then calculcate the throughput per
watt at the end. The FPGA consumes 12W in idle state and
approximately 18W under full load. The GPU consumes about
30W in idle state and around 65W under full load. The CPU
consumes roughly 22W in idle state and about 49W under full
load.

When compared to the OSQP-indirect running on CPU
backends, our prototype (C = 32) achieves a geometric mean
of 127.0× greater energy efficiency. In comparison to the GPU
backend, the prototype attains a geometric mean of 21.7×
higher energy efficiency. For OSQP-direct, our prototype
achieves a geometric mean of 11.2× higher energy efficiency
compared to the CPU. The enhanced energy efficiency of
our proposed architecture proves advantageous for both edge
applications, such as Model Predictive Control, and cloud
applications, including portfolio optimization and machine
learning algorithms like SVM, LASSO, and Huber fitting.

The above evaluation only considers the power of the
standalone device. Since the FPGA and GPU backend still
need the CPU to transfer the data at the beginning, we also
measured the total system power, including the CPU’s idle
power. Our work still shows energy efficiency gains, as shown
in Table III.

D. Deterministic Timing

In control engineering, deterministic timing is a highly
desirable property. To assess this feature, we calculated the
standard deviation of solving time normalized by the absolute
solver run time for problems in the MPC benchmark across
each architecture. The result is shown in Figure 11. When
compared to the OSQP-indirect running on CPU backends, our
prototype achieves a geometric mean of 16.5× less runtime
jitter. In comparison to the GPU backend, the prototype
attains a geometric mean of 33.4× less runtime jitter. The
deterministic timing, along with the faster solving time of our
solution, can facilitate more reliable and smoother control in
various applications.

VI. RELATED WORKS

We now briefly discuss the other ADMM QP solvers and
sparse linear system solvers developed for other workloads in
the literature. A systolic array-based accelerator specifically
designed for Cholesky and LU factorization was proposed in
[18]. Their approach primarily targets large-scale problems
characterized by numerous super nodes in the elimination tree,
which is not a typical scenario in the optimization problems
studied here. On the other hand, [37] introduced an FPGA-
based PCG accelerator, but their solution does not incorporate
any specialized optimization techniques for handling matrix
sparsity patterns.

There are many works focusing on accelerating specific
operators related to the QP solver, like sparse matrix vector
multiplication [5], [27], [30]–[32], [34], [44]–[46]. In terms
of complete QP solver acceleration, the closet works we
can identify are cuOSQP [35] for GPUs and RSQP [42] for
FPGAs. RSQP introduced an automated design process that
generates an FPGA-assisted QP solver tailored to specific
applications, with function units and data paths that match the
matrix sparsity structure. The solver architecture remains static
while solving each problem but must be reconfigured when
switching between problem sparsity structures to get the best
performance. The reconfiguration cost is offset by reusing the
static architecture for numerous parameterized problems that
share the same sparsity structure but have different non-zero
values. However, their solution needs to go back and forth
between the CPU and FPGA in every ADMM iteration and
suffers performance issues on small scale problems. Besides,
their architecture only supports OSQP-indirect and lacks the

OSQP-direct CPU
(QDLDL)

OSQP-direct Prototype
C=32

OSQP-indirect Prototype
C=32

OSQP-indirect CPU
(MKL)

OSQP-indirect GPU
(cuSparse)

R
un

 ti
m

e(
s)

U
til

iz
at

io
n

Th
ro

ug
hp

ut
/W

Support Vector Machine Model Predictive Control Portfolio Optimization Huber Fitting LASSO

OSQP-indirect RSQP
(CPU+FPGA)

Fig. 10. The top row presents a comparison of solver run times. OSQP currently does not support OSQP-direct on GPUs. Additionally, RSQP generates
different architectures for different application domains, so we have excluded it from the utilization and energy efficiency figures, which evaluate a single
architecture across different problems.

GPU CPU (MKL) Prototype C=32

N
or

m
al

iz
ed

 ru
n

tim
e

jit
te

r

CPU (QDLDL)

Fig. 11. Run time jitter comparison. The reduction of jitter is due to our
cycle-accurate control of the program execution.

support of OSQP-direct. Table IV provides a summary com-
parison of the latest ADMM-based QP solvers on different
platforms. Our work is the first fully FPGA-based generic QP
solver.

VII. CONCLUSION

In conclusion, this study has introduced a novel architecture
specifically designed for addressing sparse convex quadratic
programs. The proposed solution effectively adapts to varying

TABLE IV
GENERIC QP SOLVERS

Platform Architecture Optimization

OSQP CPU General Purpose
cuOSQP CPU+GPU Sparse Matrix Multiplication
RSQP CPU+FPGA Sparse Matrix Multiplication
This work full-FPGA or ASIC Sparse Matrix Multiplication

and Factorization

sparsity patterns by employing customized network instruction
scheduling at compile time.

As we look ahead, our research will explore advanced
techniques such as super pipelining and dynamic multiple-
instruction-issue and reordering. Additionally, we aim to
identify and map further application algorithms that share
the same core sparse operations. Ultimately, our goal is to
develop and validate an ASIC version of the prototypes, further
demonstrating the advantages of our proposed architecture.

REFERENCES

[1] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter,
“Differentiable convex optimization layers,” in Advances in Neural
Information Processing Systems, 2019.

[2] P. R. Amestoy, T. A. Davis, and I. S. Duff, “Algorithm 837: Amd, an
approximate minimum degree ordering algorithm,” ACM Transactions
on Mathematical Software (TOMS), vol. 30, no. 3, pp. 381–388, 2004.

[3] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a layer
in neural networks,” in International Conference on Machine Learning.
PMLR, 2017, pp. 136–145.

[4] M. ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 9.0., 2019. [Online]. Available: http://docs.mosek.com/9.0/
toolbox/index.html

[5] B. Asgari, R. Hadidi, T. Krishna, H. Kim, and S. Yalamanchili, “Al-
rescha: A lightweight reconfigurable sparse-computation accelerator,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 249–260.

[6] E. Bendersky, “Complete c99 parser in pure python,” 2024. [Online].
Available: https://github.com/eliben/pycparser

[7] P. T. Boggs and J. W. Tolle, “Sequential Quadratic Programming,” Acta
Numerica, vol. 4, pp. 1–52, 1996.

[8] S. Boyd, E. Busseti, S. Diamond, R. N. Kahn, K. Koh, P. Nystrup, and
J. Speth, “Multi-Period Trading via Convex Optimization,” Foundations
and Trends® in Optimization, vol. 3, no. 1, pp. 1–76, Aug. 2017.

[9] M.-A. Boéchat, J. Liu, H. Peyrl, A. Zanarini, and T. Besselmann, “An
architecture for solving quadratic programs with the fast gradient method
on a field programmable gate array,” in 21st Mediterranean Conference
on Control and Automation, 2013, pp. 1557–1562.

[10] P. Chen, W. Guan, and P. Lu, “Esvio: Event-based stereo visual inertial
odometry,” IEEE Robotics and Automation Letters, vol. 8, no. 6, pp.
3661–3668, 2023.

[11] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, “Algo-
rithm 887: Cholmod, supernodal sparse cholesky factorization and up-
date/downdate,” ACM Transactions on Mathematical Software (TOMS),
vol. 35, no. 3, pp. 1–14, 2008.

[12] T. A. Davis, Direct methods for sparse linear systems. SIAM, 2006.
[13] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar, “A survey of

direct methods for sparse linear systems,” Acta Numerica, vol. 25, pp.
383–566, 2016.

[14] W. Deng, P. Polak, A. Safikhani, and R. Shah, “A Unified Framework
for Fast Large-Scale Portfolio Optimization,” Data Science in Science,
vol. 3, no. 1, p. 2295539, Dec. 2024.

[15] S. Diamond and S. Boyd, “Cvxpy: A python-embedded modeling
language for convex optimization,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 2909–2913, 2016.

[16] Z. Dong, W. Mau, Y. Feng, Z. T. Pennington, L. Chen, Y. Zaki,
K. Rajan, T. Shuman, D. Aharoni, and D. J. Cai, “Minian, an open-
source miniscope analysis pipeline,” Elife, vol. 11, p. e70661, 2022.

[17] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse
matrices. Oxford University Press, 2017.

[18] A. Feldmann and D. Sanchez, “Spatula: A hardware accelerator
for sparse matrix factorization,” in Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, 2023, pp.
91–104.

[19] J. A. Fisher, “Very long instruction word architectures and the eli-512,”
in Proceedings of the 10th annual international symposium on Computer
architecture, 1983, pp. 140–150.

[20] P. Grigoraş, P. Burovskiy, W. Luk, and S. Sherwin, “Optimising sparse
matrix vector multiplication for large scale FEM problems on FPGA,”
in 2016 26th International Conference on Field Programmable Logic
and Applications (FPL), 2016, pp. 1–9.

[21] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[22] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan,
and M. Morari, “Embedded predictive control on an FPGA using the
fast gradient method,” in 2013 European Control Conference (ECC),
2013, pp. 3614–3620.

[23] J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan, “An FPGA im-
plementation of a sparse quadratic programming solver for constrained
predictive control,” in Proceedings of the 19th ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, ser. FPGA ’11.
New York, NY, USA: Association for Computing Machinery, 2011, p.
209–218.

[24] J. W. Liu, “The role of elimination trees in sparse factorization,” SIAM
journal on matrix analysis and applications, vol. 11, no. 1, pp. 134–172,
1990.

[25] J. W. Liu, E. G. Ng, and B. W. Peyton, “On finding supernodes for
sparse matrix computations,” SIAM Journal on Matrix Analysis and
Applications, vol. 14, no. 1, pp. 242–252, 1993.

[26] I. McInerney, G. A. Constantinides, and E. C. Kerrigan, “A survey of
the implementation of linear model predictive control on FPGAs,” IFAC-
PapersOnLine, vol. 51, no. 20, pp. 381–387, 2018.

[27] F. Muñoz-Martı́nez, R. Garg, M. Pellauer, J. L. Abellán, M. E. Aca-
cio, and T. Krishna, “Flexagon: A multi-dataflow sparse-sparse matrix
multiplication accelerator for efficient dnn processing,” in Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, 2023, pp.
252–265.

[28] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” in GPU Technology Conference, 2010.

[29] P. Nystrup, S. Boyd, E. Lindström, and H. Madsen, “Multi-period port-
folio selection with drawdown control,” Annals of Operations Research,
vol. 282, no. 1-2, pp. 245–271, 2019.

[30] S. Pal, A. Amarnath, S. Feng, M. O’Boyle, R. Dreslinski, and C. Dubach,
“Sparseadapt: Runtime control for sparse linear algebra on a reconfig-
urable accelerator,” in MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, 2021, pp. 1005–1021.

[31] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace:
An outer product based sparse matrix multiplication accelerator,” in
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 724–736.

[32] G. Rao, J. Chen, J. Yik, and X. Qian, “Sparsecore: stream isa and
processor specialization for sparse computation,” in Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 186–199.

[33] J.-M. Rodriguez-Bernuz, I. McInerney, A. Junyent-Ferré, and E. C.
Kerrigan, “Design of a Linear Time-Varying Model Predictive Control
Energy Regulator for Grid-Tied VSCs,” IEEE Transactions on Energy
Conversion, vol. 36, no. 2, pp. 1425–1434, 2021.

[34] F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi, and F. Franchetti,
“Efficient spmv operation for large and highly sparse matrices us-
ing scalable multi-way merge parallelization,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 347–358.

[35] M. Schubiger, G. Banjac, and J. Lygeros, “GPU acceleration of ADMM
for large-scale quadratic programming,” Journal of Parallel and Dis-
tributed Computing, vol. 144, pp. 55–67, 2020.

[36] J. E. Smith and G. S. Sohi, “The microarchitecture of superscalar
processors,” Proceedings of the IEEE, vol. 83, no. 12, pp. 1609–1624,
1995.

[37] L. Song, L. Guo, S. Basalama, Y. Chi, R. F. Lucas, and J. Cong,
“Callipepla: Stream centric instruction set and mixed precision for
accelerating conjugate gradient solver,” in Proceedings of the 2023
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 2023, pp. 247–258.

[38] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[39] K. Świrydowicz, E. Darve, W. Jones, J. Maack, S. Regev, M. A.
Saunders, S. J. Thomas, and S. Peleš, “Linear solvers for power grid
optimization problems: a review of gpu-accelerated linear solvers,”
Parallel Computing, vol. 111, p. 102870, 2022.

[40] K. Świrydowicz, N. Koukpaizan, T. Ribizel, F. Göbel, S. Abhyankar,
H. Anzt, and S. Peleš, “Gpu-resident sparse direct linear solvers for
alternating current optimal power flow analysis,” International Journal
of Electrical Power & Energy Systems, vol. 155, p. 109517, 2024.

[41] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,
“Intel math kernel library,” in High-Performance Computing on the
Intel® Xeon Phi™. Springer, 2014, pp. 167–188.

[42] M. Wang, I. McInerney, B. Stellato, S. Boyd, and H. So, “Rsqp:
Problem-specific architectural customization for accelerated convex
quadratic optimization,” in 2023 ACM/IEEE 50th Annual International
Symposium on Computer Architecture (ISCA), 2023.

[43] S.-X. Wen, Z.-R. Pan, K.-Z. Liu, X. Zhang, and X.-M. Sun, “Practical
Offset-Free Model Predictive Control and Its Embedded Application to
Aeroengines,” IEEE Transactions on Automation Science and Engineer-
ing, vol. Early Access, pp. 1–11, 2023.

[44] X. Xie, Z. Liang, P. Gu, A. Basak, L. Deng, L. Liang, X. Hu, and
Y. Xie, “Spacea: Sparse matrix vector multiplication on processing-in-
memory accelerator,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2021, pp. 570–
583.

http://docs.mosek.com/9.0/toolbox/index.html
http://docs.mosek.com/9.0/toolbox/index.html
https://github.com/eliben/pycparser
https://www.gurobi.com

[45] G. Zhang, N. Attaluri, J. S. Emer, and D. Sanchez, “Gamma: Leveraging
gustavson’s algorithm to accelerate sparse matrix multiplication,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
687–701.

[46] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient
architecture for sparse matrix multiplication,” in 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2020, pp. 261–274.

	Introduction
	The QP Solver Algorithm
	Overview
	Application-specific Sparsity Patterns
	OSQP-Direct: Factorization-based KKT Solver
	OSQP-Indirect: PCG KKT Solver
	Core Matrix Operation Set

	Architecture and System Design
	Baseline architecture for the MAC primitive
	Computational Network Design for All Primitives
	Network Instruction for Primitive Instructions
	Programming Model

	Network Instruction Scheduling
	Structural and Data Hazards
	The Scheduling Strategy for OSQP-indirect
	The Scheduling Strategy for OSQP-direct

	Evaluation
	System Setup
	End-to-end Solver Run time
	Power Efficiency
	Deterministic Timing

	Related Works
	Conclusion
	References

