
Learning Bounds on Computational Values in
Iterative Methods using Reachability Analysis

Mukund Verma, Ian McInerney, and Ludovic Renson

Department of Mechanical Engineering, Imperial College London,
London, UK, SW7 2AZ.

mukund.verma20@imperial.ac.uk, i.mcinerney17@imperial.ac.uk,
l.renson@imperial.ac.uk

Abstract. In this extended abstract, we present our initial work on how
the reachable sets of the Koopman operator for an iterative method can
be approximated and then used to make decisions about the number
formats required for implementations. We present our initial framework
for learning the Koopman operator and performing reachability analysis
on it, followed by an illustrative example on the Gauss-Seidel stationary
iterative method, where the reachability analysis can inform the decision
to use signed/unsigned variables.

Keywords: iterative methods, Koopman operator, reachability analysis

1 Introduction

The importance of understanding the numerical behavior of iterative methods is
growing as the proliferation of accelerators such as GPUs and FPGAs (Field Pro-
grammable Gate Arrays) increases. Each new generation of accelerators brings
new numerical formats — from novel floating-point formats like TensorFloat32,
BFloat16 and the recently announced 8/4-bit MX-Floats, to the resurgence of
8/4-bit integer formats, there has been a growing trend of shrinking the number
of bits used to represent numbers. Additionally, custom hardware accelerators,
such as FPGAs, allow engineers to implement their own custom floating-point
formats, integer data types, or even newer non-standard formats such as Posits.

Using these new smaller number formats for algorithms may lead to prob-
lems though, since these formats have a smaller representable range (the largest
and smallest value that can be represented) leading to overflow problems, and
larger unit round-off (the distance between two adjacent representable num-
bers). Analysing how algorithms will behave with these smaller formats is es-
sential, since algorithms that previously worked in higher precision may become
inaccurate, or even fail to converge to the correct result when using these smaller
number formats.

In general, the majority of the prior work in the numerical analysis of al-
gorithms in floating-point has ignored the representable range, since the dou-
ble/single precision formats found in modern computers have a representable
range on the order of ±10308 and ±1038, respectively, which is large enough to

2 Mukund Verma, Ian McInerney, and Ludovic Renson

not affect most computations. Instead, the focus was on the effect of round-off
error on iterative methods, building frameworks such as backwards error anal-
ysis to model the propagation of round-off errors through the computations in
algorithms. Designers of custom hardware for control have examined the over-
flow behavior of algorithms, deriving analytical guarantees for algorithms such
as linear system solvers [13] and optimization solvers [14]. Recently, however,
the availability of the smaller number formats, such as Float16, in modern de-
vices has brought the subject of overflow/underflow for numerical algorithms in
floating point back into more mainstream focus [16].

In this work, we propose analyzing the representable range necessary to im-
plement specific algorithms by performing reachability analysis on a Koopman
operator linearization of the algorithm. We propose using data-driven Koopman
operator estimation for this analysis to allow for building the Koopman operator
of complex, or even black-box, numerical codes by only capturing the necessary
algorithm state information at each iteration. The learned Koopman operator is
then used to compute the reachable sets of the iterative method, which then pro-
vide the relevant information to determine what data types will have a suitable
representable range.

2 Background

We begin with background on several elements and ideas we use in this work,
including the Koopman operator and its estimation, and the idea of viewing
algorithms as dynamic systems for analysis.

2.1 Dynamics of Algorithms

Iterative methods, such as linear system solvers and optimization solvers, can be
viewed as a nonlinear mapping F from the algorithm state at iteration k, called
sk, to the algorithm state at iteration k+1, called sk+1, of the form

sk+1 = F(sk). (1)

The actual state update operations done by the mapping F can take any form,
ranging from the simple linear update of the Jacobi method solving As = b,
through the single-equation nonlinear update of a simple Newton’s method,
to the complicated multi-step update in solvers such as the Generalized Mini-
mum Residual (GMRES) method for solving linear systems. The nonlinear map-
ping (1) can be naturally associated with a nonlinear discrete-time system

xk+1 = F (xk) (2)

that relates the current states at time sample k to the next states at time sample
k+1 through a map F : χ → χ.

Viewing algorithms as discrete-time systems allows for tools from dynamical
systems theory and control theory to be used to both analyze and design iterative

Learning Variable Bounds in Iterative Methods 3

algorithms [9]. Algorithm convergence can be studied using popular tools in the
analysis of dynamical systems, like Lyapunov methods [23], dissipativity theory
[18], and input-to-state stability in the presence of disturbances [11], while tools
like Integral Quadratic Constraints [21] and methods like PID controllers [5] can
be used to design stable and robust algorithms.

Prior works have analytically examined the reachability and controllability of
some numerical linear algebra methods, such as showing the QR decomposition
is stable when used with Hessenburg matrices [15], or determining the classes of
matrices that lead to a stable Rayleigh iteration in eigenvalue methods [12].

2.2 Koopman Operator

In this work, we focus on discrete-time dynamical systems, since the iterations
of an iterative method can be mapped to the discrete time steps of the discrete-
time system (2). When F is a linear map F (x) = Ax, the system (2) simplifies
to the linear state update equation

xk+1 = Axk. (3)

While the analysis of the linear system (3) is well-studied, analyzing the proper-
ties of the nonlinear system F in (2) is a more difficult task, and many techniques
resort to analyzing a linearization of the nonlinear system instead.

One such linearization is theKoopman operator, which is an infinite-dimensional
linear operator K : G(χ) → G(χ) that operates in a space of observables formed
by the set of measurement functions G(χ) composed of individual functions
g : χ → R [7]. This space of observables follows the underlying state space
χ, so that

Kg(x) = g(F (x)). (4)

The Koopman operator K can, in theory, perfectly represent the nonlinear dy-
namics of F as an infinite-dimensional linear operator. However, this infinite-
dimensional operator is computationally intractable, and so using the Koopman
operator to analyze a system is done using a finite-dimensional approximation of
K using a finite number of observable functions, creating a truncated Koopman
operator.

The choice of these observable functions is crucial to the accuracy of the
truncated Koopman operator, and how to choose them is still an active area of
research [7]. Common observable functions used include radial basis functions
and monomials [4], while recent work has investigated using machine learning
techniques to learn the observable functions alongside the truncated Koopman
operator [10]. However, in cases where the structure/equations of the underlying
dynamics is known, a suitable dictionary of observable functions can be ana-
lytically derived, possibly leading to the truncated Koopman operator being a
perfect approximation of the original nonlinear system [6].

The use of the Koopman operator to approximate dynamical systems has
found applications in both the analysis and control of nonlinear systems. For
instance, it is routinely used as an analysis tool to locate the regions of attraction

4 Mukund Verma, Ian McInerney, and Ludovic Renson

for nonlinear systems and determine their stability [19], and to compute the
reachability of nonlinear systems. [17, 2, 1].

Koopman operators of algorithms Combining data-based/learning meth-
ods with a system-theoretic view of algorithms has recently appeared as a new
research area. The authors of [8] proposed the construction of Koopman opera-
tors for algorithms, and then used them to compute the regions of stability for
the original algorithm. The spectrum of the Koopman operator was used in [20]
to identify commonalities and relations between algorithms to build taxonomies
without requiring access to the underlying equations. Finally, recent work in
[22] built Koopman operators for cryptographic algorithms such as the Diffie-
Hellman key exchange and Rivest-Shamir-Adleman cryptosystems, approximat-
ing these highly nonlinear methods with a linear Koopman operator that was
then used to study the methods and derive a (computationally-intractable) ap-
proach for decrypting the systems.

3 Learning Algorithm Reachability

We propose learning a Koopman operator representation for numerical methods
and then using dynamical systems reachability analysis to analyze the reachabil-
ity of this operator to determine the representable range needed for a numerical
method.

3.1 Koopman Approximation

The Koopman operator for the algorithm is computed using the Extended Dy-
namic Mode Decomposition (eDMD) on generated datasets containing the algo-
rithm state trajectories for various initial conditions and algorithm parameters.
The choice of what quantities are included in the algorithm state is crucial to
the accuracy of the learned operator, and generally should contain more than
just the current iterate and may need to include “hidden states” internal to the
method. For example, algorithms with adaptive step-sizes should include the
step-size as a state to ensure the operator can learn how the step-size affects the
growth/shrinkage of the iterates.

The observables used when learning the Koopman operator also play an im-
portant role. In this work, we currently combine two sets of observables: Gaus-
sian Radial Basis Functions (RBFs) and the original system states. The Gaussian
RBF was chosen since it has generally been used in other works as an observ-
able when there was no prior information available to guide the choosing of the
observable functions. For the RBFs, the centers used were placed randomly in
the algorithm state space, however other methods, such as clustering, could be
used to place the centers. In addition to the RBFs, we place the original states
as observables to aid in the reconstruction of the state trajectories from the
Koopman operator [7].

Learning Variable Bounds in Iterative Methods 5

Fig. 1. Trajectories used for learning the Koopman operator. The centers of the RBFs
are marked as blue circles.

3.2 Reachability Analysis

After computing the linear Koopman operator, we use it to perform a forward
reachability analysis for the original iterative method. In this work, we perform
the reachability analysis using Monte-Carlo methods – generating initial points
inside a desired starting set, lifting them to the Koopman space, and then prop-
agating them through the linear operator.

While other methods for linear reachability could be applied to the Koopman
operator, care must be taken to ensure the starting set is properly constructed
in the lifted space. One such method proposed in [1] builds an interval over-
approximation of the initial set in the lifted space by solving a satisfiability
problem, and then solves a linear program with the sets as constraints. Another
proposed method uses Taylor model arithmetic to lift the initial set and then
converts the set to a zonotope representation to apply standard linear system
reachability techniques [2, 3].

3.3 Examples

As this is early work, we focus on a simple example that can help explain the
proposed method, leaving more complex examples for future work.

The algorithm we examine is the Gauss-Seidel stationary iterative method for
computing the solution of a linear system Ax = b of dimension 2 with A = [6 2

1 5]

and b =
[
3 5

]T
. The algorithm state used to learn the Koopman operator is

simply the value of x at each iteration. We sample the algorithm’s trajectories
on a uniform grid in the region I := [−10, 10] × [−10, 10], and then place 20
RBFs randomly into the region I as the observable functions. The trajectories
used to learn the Koopman operator, and the centers for the RBF observables,
can be seen in Figure 1.

After learning the Koopman operator, we use the following steps to compute
reachable sets:
1. Define the non-lifted set.
2. Sample points in the non-lifted set.

6 Mukund Verma, Ian McInerney, and Ludovic Renson

(a) [−10, 10]× [0, 10] (b) [−10, 10]× [−10, 5]

(c) [5, 10]× [−10,−5] (d) [0, 10]× [0, 10]

Fig. 2. Simulated reachability from initial conditions using the Koopman operator

3. Lift the sampled points to the observable space.
4. Apply the Koopman operator to each sampled point.
5. Extract the reachable set using the state observables.

The results of the reachability analysis can be seen in Figure 2. Using these
sets, we can start to make qualitative observations about the behavior of the
Gauss-Seidel method applied to this problem. We can observe the regions that
the trajectories are in, with those that start in the upper-half of the space stay-
ing inside that region, as shown in Figure 2a, and those starting in the region
[−10, 10]× [−10, 5] staying inside that region (shown in Figure 2b). We can then
use this information to inform our choice of number systems to use when storing
the x and y values in Gauss-Seidel - with Figures 2a and 2d showing that y
will be positive if it starts positive but x can go negative if it starts positive -
implying we can use unsigned numbers for y but must use signed numbers for x.

4 Future work & Discussion

In this work, we presented the initial framework for using the reachability of the
Koopman operator to determine required properties of the number formats used

Learning Variable Bounds in Iterative Methods 7

to implement algorithms. This work merely scratches the surface of this field,
though, and there are still many avenues and open questions that we plan to
explore.

The next stages of this work will explore how to perform the Koopman lift-
ing for more complicated algorithms, such as conjugate gradient methods and
optimization solvers. This will require determining better methods for observ-
able function selection (e.g., possibly using learned observables as discussed in
[7]), exploring how the “hidden” states affect the approximation and subsequent
reachability analysis, and generalizing the method to handle classes of problems
instead of individual problem instances.

After this, the key question is how to perform the reachability analysis and
produce a meaningful result for implementers/hardware designers. In this work,
we simply performed a Monte-Carlo reachability analysis, however that does
not necessarily provide a certifiable statement about the values the algorithm
will obtain. Instead, set preserving methods for reachability analysis using the
Koopman operator should be explored to provide a certifiable analysis of the
algorithm’s necessary representable range. This will require a more thorough
investigation of the various reachability methods available, such as looking at
techniques in the literature for performing a set-preserving lifting into zono-
topes in the observable space that are then propagated through the Koopman
operator [1, 3] or doing reachability analysis directly during the computation of
the Koopman operator [17].

Following this, we would like to build an optimization-based framework that
can be used to find the smallest number formats that can be used in numerical
methods for various problem classes.

References

1. Bak, S., Bogomolov, S., Duggirala, P.S., Gerlach, A.R., Potomkin, K.: Reachability
of Black-Box Nonlinear Systems after Koopman Operator Linearization. IFAC-
PapersOnLine 54(5), 253–258 (2021)

2. Bak, S., Bogomolov, S., Hekal, A., Kochdumper, N., Lew, E., Mata, A., Rahmati,
A.: Falsification using Reachability of Surrogate Koopman Models. In: Proceedings
of the 27th ACM International Conference on Hybrid Systems: Computation and
Control, HSCC ’24, pp. 1–13. Association for Computing Machinery, Hong Kong,
China (2024)

3. Bak, S., Bogomolov, S., Hencey, B., Kochdumper, N., Lew, E., Potomkin, K.:
Reachability of Koopman Linearized Systems Using Random Fourier Feature Ob-
servables and Polynomial Zonotope Refinement. In: S. Shoham, Y. Vizel (eds.)
Computer Aided Verification, 34th International Conference, CAV 2022, CAV:
International Conference on Computer Aided Verification, pp. 490–510. Springer
International Publishing, Cham (2022)

4. Bevanda, P., Sosnowski, S., Hirche, S.: Koopman operator dynamical models:
Learning, analysis and control. Annual Reviews in Control 52, 197–212 (2021)

5. Bhaya, A., Kaszkurewicz, E.: Iterative methods as dynamical systems with feed-
back control. In: 42nd IEEE Conference on Decision and Control (CDC), vol. 3,
pp. 2374–2380. IEEE, Maui, HI (2003)

8 Mukund Verma, Ian McInerney, and Ludovic Renson

6. Brunton, S.L., Brunton, B.W., Proctor, J.L., Kutz, J.N.: Koopman invariant sub-
spaces and finite linear representations of nonlinear dynamical systems for control.
PLoS ONE 11(2), 1–19 (2016)

7. Brunton, S.L., Budǐsić, M., Kaiser, E., Kutz, J.N.: Modern Koopman Theory for
Dynamical Systems. SIAM Review 64(2), 229–340 (2022)

8. Dietrich, F., Thiem, T.N., Kevrekidis, I.G.: On the Koopman Operator of Algo-
rithms. SIAM Journal on Applied Dynamical Systems 19(2), 860–885 (2020)

9. Dörfler, F., He, Z., Belgioioso, G., Bolognani, S., Lygeros, J., Muehlebach, M.:
Towards a Systems Theory of Algorithms. arXiv 2401.14029 (2024)

10. Hao, W., Huang, B., Pan, W., Wu, D., Mou, S.: Deep Koopman learning of non-
linear time-varying systems. Automatica 159, 111,372 (2024)

11. Hasan, A., Kerrigan, E.C., Constantinides, G.A.: Control-Theoretic Forward Error
Analysis of Iterative Numerical Algorithms. IEEE Transactions on Automatic
Control 58(6), 1524–1529 (2013)

12. Helmke, U., Wirth, F.: On controllability of the real shifted inverse power iteration.
Systems & Control Letters 43(1), 9–23 (2001)

13. Jerez, J.L., Constantinides, G.A., Kerrigan, E.C.: A Low Complexity Scaling
Method for the Lanczos Kernel in Fixed-Point Arithmetic. IEEE Transactions
on Computers 64(2), 303–315 (2015)

14. Jerez, J.L., Goulart, P.J., Richter, S., Constantinides, G.A., Kerrigan, E.C., Morari,
M.: Embedded Online Optimization for Model Predictive Control at Megahertz
Rates. IEEE Transactions on Automatic Control 59(12), 3238–3251 (2014)

15. Jordan, J., Helmke, U.: Controllability of the QR Algorithm on Hessenberg Flags.
In: Fifteenth International Symposium on Mathematical Theory of Networks and
Systems. Notre Dame, IN, USA (2002)

16. Klöwer, M., Hatfield, S., Croci, M., Düben, P.D., Palmer, T.N.: Fluid Simulations
Accelerated With 16 Bits: Approaching 4x Speedup on A64FX by Squeezing Shal-
lowWaters.jl Into Float16. Journal of Advances in Modeling Earth Systems 14(2),
e2021MS002,684 (2022)

17. Kumar, A., Umathe, B., Vaidya, U., Kelkar, A.: Reachability Analysis in Ground
Vehicle System using Koopman Operator Theory. In: 2023 15th IEEE Interna-
tional Conference on Industry Applications (INDUSCON), pp. 493–498. IEEE,
São Bernardo do Campo, Brazil (2023)

18. Lessard, L., Recht, B., Packard, A.: Analysis and Design of Optimization Algo-
rithms via Integral Quadratic Constraints. SIAM Journal on Optimization 26(1),
57–95 (2016)

19. Mauroy, A., Sootla, A.: Estimation of Regions of Attraction with Formal Certifi-
cates in a Purely Data-Driven Setting. In: 2023 62nd IEEE Conference on Decision
and Control (CDC), pp. 4682–4687. IEEE, Singapore, Singapore (2023)

20. Redman, W.T., Fonoberova, M., Mohr, R., Kevrekidis, I.G., Mezić, I.: Algorithmic
(Semi-)Conjugacy via Koopman Operator Theory. In: 2022 IEEE 61st Conference
on Decision and Control (CDC), pp. 6006–6011. IEEE, Cancun, Mexico (2022)

21. Scherer, C., Ebenbauer, C.: Convex Synthesis of Accelerated Gradient Algorithms.
SIAM Journal on Control and Optimization 59(6), 4615–4645 (2021)

22. Schlor, S., Strässer, R., Allgöwer, F.: Koopman interpretation and analysis of a
public-key cryptosystem: Diffie-Hellman key exchange. IFAC-PapersOnLine 56(2),
984–990 (2023)

23. Wilson, A.C.: A Lyapunov Analysis of Accelerated Methods in Optimization. Jour-
nal of Machine Learning Research 22(113), 34 (2021)

