
©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICFPT67023.2025.00047

MPC Solver Hardware Generation Framework with
Model-Specific Operation Fusion and Pruning

Zhenyu Wu∗†, Brian Plancher‡, Ian McInerney§, Hayden Kwok-Hay So†, Maolin Wang∗∗††, and Kwang-Ting Cheng∗∗
∗AI Chip Center for Emerging Smart Systems

†The University of Hong Kong
‡Dartmouth College and Barnard College, Columbia University

§Imperial College London
∗∗The Hong Kong University of Science and Technology

{zhenyuwu, hso}@eee.hku.hk, plancher@dartmouth.edu, i.mcinerney17@imperial.ac.uk, {maolinwang, timcheng}@ust.hk

Abstract—Model Predictive Control (MPC) is a state-of-the-
art and robust control framework. However, its stringent per-
formance requirements for computational infrastructure, and its
need for real-time computation at the edge, hinder its widespread
adoption in various application scenarios. This is particularly
challenging for the MCUs commonly found on tiny robots. To
address this computational challenge, we developed a flexible
MPC solver hardware generation framework which includes a
parameterized and programmable vector architecture template
that accommodates instruction-level and data-level parallelism
in vector and matrix functional units, and a model-specific fused
architecture. Implementation of the proposed processor on the
Ultra96 platform achieves up to a 9.73× speedup compared
to existing generic solutions on MCUs. Moreover, end-to-end
performance tests reveal that this speedup reduces the overall
control error by 25.96%. Overall, the enhanced flexibility and
performance of our proposed processor design open up the po-
tential for MPC to be utilized in a broader range of applications.

I. INTRODUCTION

Model Predictive Control (MPC) is an advanced control
technique widely used in industries such as process control,
robotics, aviation, and electrical grids due to its ability to
handle multi-variable systems, incorporate constraints, and
optimize performance over a future horizon [6], [7], [16], [28],
[32], [33]. MPC repeatedly solves an underlying trajectory op-
timization [2] problem over an N -step horizon. This problem
minimizes a cost function J over the state xk ∈ Rn and control
uk ∈ Rm variables at each time step k. The system evolves
according to a dynamics function f and the states and controls
are constrained within sets X and U . As such, MPC repeatedly
solves the following optimization problem at each control step,
where x̄ is the current system state estimate:

min
x1:N ,u1:N−1

J(x1:N , u1:N−1)

s.t. xk+1 = f(xk, uk), k = 1, . . . , N − 1

xk ∈ X , uk ∈ U , k = 1, . . . , N

x0 = x̄.

(1)

This research was conducted by ACCESS – AI Chip Center for Emerging
Smart Systems, supported by the InnoHK initiative of the Innovation and
Technology Commission of the Hong Kong Special Administrative Region
Government. ††Corresponding author.

The first control action u1, from the solution of (1), is applied
to the system which then evolves according to its real-world
dynamics. The process then repeats, with a new sensor reading
updating x̄, followed by the solution of (1) again.

While a very powerful technique, the widespread applica-
tion of MPC is often hindered by its significant computational
challenges [25]. Take a trajectory tracking task of a quadrotor
as an example, while a longer prediction horizon N and
higher control update rate can significantly improve the control
performance as shown in Figure 1, it can also significantly in-
crease the computational complexity of the controller. As such,
to be used for real-time embedded control, MPC requires a
low-latency and high-throughput real-time optimization solver
on embedded platforms. Balancing the trade-off of control
performance and computational efficiency remains a critical
challenge in deploying MPC across various domains [29].

Recent advances in cached MPC algorithms [3], [21], [26]
have paved the way for more efficient control systems, demon-
strating high-performance on physical robot hardware. Further
adaptation of these algorithms for reconfigurable platforms,
such as FPGAs, can offer more power-efficient and faster
MPC solutions, improving real-world performance. However,
the wide variety of available FPGA platforms and differing
performance requirements present several challenges in the
mapping process. Designers must carefully select platforms
based on a balance between specific power consumption and
speed requirements. Therefore, a versatile design framework
that supports multiple target platforms and provides accurate
performance projections is highly desirable. In this work, we
propose such a novel design framework with the following key
contributions:

• We propose the first open-source, high-performance
FPGA solver generation framework for control problems,
based on recent, state-of-the-art, cached MPC algorithms,
enabling agile deployment of embedded controllers.

• We employ the built-in scheduler of HLS tools to au-
tomatically extract instruction-level parallelism from se-
quentially dependent operations in the generated solver.

• We utilize model-specific sparsity-aware processing to
eliminate redundant computations and improve resource

https://doi.org/10.1109/ICFPT67023.2025.00047

X

2
0

Y

0
2

Z

0.0

2.5

(a) Spiral Tracking
Ref
Actual

10 20 30 50 70 90100
Horizon

10

50

150

500

1000

Fr
eq

(b) RMSE Heatmap

0.02

0.04

0.06

101 102 103

Freq

0.02

0.04

RM
SE

(c) RMSE vs Freq

50 100
Horizon

0.02

0.03

0.04

RM
SE

(d) RMSE vs Horizon

Fig. 1. Effect of different prediction horizon and control update rate when executing a quadrotor trajectory tracking task in terms of the Root Mean Square Error
(RMSE) between the reference trajectory and actual trajectory. Longer prediction horizons and higher control update rates bring better control performance.

efficiency.

The paper is organized as follows: Section II introduces
details about our target cached MPC algorithm and its architec-
ture design challenge. Section III and Section IV introduce two
methods we explored to generate hardware solvers. Section V
evaluates the performance of our proposed solutions on an
FPGA. Section VI summarizes our work. Our implementa-
tion code is publicly available at https://github.com/
KevinLikesDringCoffe/tinympc_ip_gen.

II. BACKGROUND

A. Related Work

Researchers have been actively exploring FPGA designs to
provide real-time power-efficient implementations of Model
Predictive Control (MPC) in many application areas such as
power electronics [20], [31], unmanned aerial vehicles [5],
fusion reactors [8], aviation [9] and vehicles [18].

Various algorithms and architectures have been proposed
for implementing MPC on FPGAs [23]. Initial work focused
on implementing interior-point Quadratic Programming (QP)
solvers on FPGAs [9], [10], [12], [13], with designs proposing
various optimizations such as tailored MINRES solvers [9],
[12], compressed diagonal storage for the matrices [13], or
a systolic array Cholesky factorization [19]. Further works
proposed using active-set QP solvers, which solve a sequence
of equality-constrained QP subproblems, based on Givens
rotations and the QR factorization [15], [34] or direct matrix
inversion [35]. Other works proposed using gradient-based
methods, such as the Fast Gradient Method or the Alter-
nating Direction Method of Multipliers (ADMM), achieving
Megahertz-rate controllers on simple MPC problems by utiliz-
ing highly-pipelined matrix-vector multiplications [11], [14],
[27]. Importantly, we note that there have been no systematic
investigation into designing modern and efficient architectures
for recent advances in traditional optimization algorithms for
MPC, such as TinyMPC [26], which reduce solver algorithm
complexity.

Finally, recently, researchers have proposed training ma-
chine learning models to approximate the MPC control law
offline and then implementing the closed-loop control via ML
model inference on the FPGA [5], [20], [31]. While the ML-
based approaches appear promising for implementing MPC,

they sacrifice constraint satisfaction and safety guarantees for
faster control rates.

B. The Computation Flow of TinyMPC

The general MPC problem (1) is often solved approx-
imately, where the cost is modeled quadratically and the
dynamics and set constraints are modeled linearly. In par-
ticular, in many robotic applications, J = 1

2x
T
NQfxN +

qTf xN +
∑N−1

k=1
1
2x

T
kQxk + qTk xk + 1

2u
T
kRuk + rTk uk, and

f = Axk + Buk. This produces a QP, whose solution is a
well-researched area with many known fast CPU-based solvers
(e.g., OSQP [30], DAQP [1], CVXGEN [22]).

def solve():
for _ in range(max_iter):

1. Forward pass
for i in range(N-1):

u[i] = -Kinf @ x[i] - d[i]
x[i+1] = A @ x[i] + B @ u[i]

2. Projection (box constraints)
z = [min(u_max, max(u_min, u[i]+y[i])) for

i in range(N-1)]
v = [min(x_max, max(x_min, x[i]+g[i])) for

i in range(N)]

3. Dual update
y = [y[i] + u[i] - z[i] for i in range(N-1)]
g = [g[i] + x[i] - v[i] for i in range(N)]

4. Cost terms
r = [-Uref[i]*R - rho*(z[i]-y[i]) for i in

range(N-1)]
q = [-Xref[i]*Q - rho*(v[i]-g[i]) for i in

range(N)]
p[-1] = -Pinf.T@Xref[-1] - rho*(v[-1]-g[-1])

5. Backward pass
for i in range(N-2, -1, -1):

d[i] = C1 @ (B.T @ p[i+1] + r[i])
p[i] = q[i] + C2 @ p[i+1] - Kinf.T@r[i]

Fig. 2. Pseudo-code description of the TinyMPC algorithm. The five key
steps are: (1) forward pass, (2) constraint projection, (3) dual variable update,
(4) linear cost computation, and (5) backward pass.

TinyMPC [26] further approximates this problem for more
efficient online computation by splitting, and iteratively solv-
ing, the set constraints from the rest of the problem through
an algorithmic technique known as the Alternating Direction

2

https://github.com/KevinLikesDringCoffe/tinympc_ip_gen
https://github.com/KevinLikesDringCoffe/tinympc_ip_gen

𝑛
𝐵

𝐴𝐴𝐴

𝐵

𝑥!

𝑢" = −𝐾#$%𝑥" − 𝑑"
𝑥"&! = 𝐴𝑥" + 𝐵𝑢"Dynamic model

① Affine feedback

⑥𝑑" = 𝐶! 𝐵'𝑝"&! + 𝑟"

𝑝" = 𝑞" + 𝐶(𝑝"&!− 𝐾#$%' 𝑟"⑤Riccati Equation

②Slack update
𝑧" , 𝑤"

③Dual update

④Cost update

In
te

rm
ed

ia
te

−𝐾#$%

𝑢! 𝑢(𝑢)𝑢"

𝑥(𝑥)𝑥"

𝑑! 𝑑(𝑑" 𝑑)

𝑝! 𝑝(𝑝" 𝑝)

Se
ns

or
s

Ac
tu

at
or

s 𝐵
−𝐾#$% −𝐾#$% −𝐾#$%

𝑦" , 𝑔"

𝑞" , 𝑟" , 𝑝)

… …

… …

… …

… …

ADMM
Iterations

𝑚

Fig. 3. TinyMPC computation flow. The arrows in the figure represents
computation dependency. Kinf ∈ Rm×n, C1 ∈ Rm×m, C2 ∈ Rn×n

Method of Multipliers (ADMM) [4]. The remaining minimiza-
tion of a quadratic cost subject to linear dynamics constraints
is the canonical Linear Quadratic Regulator (LQR) [17] which
admits a closed-form affine feedback control solution of the
form uk = −Kkxk − dk. TinyMPC then goes further and
precomputes and caches the approximate infinite-horizon LQR
solution, Kinf and Pinf, as well as the terms C1 = (R +
BTPinfB)−1 and C2 = (A − BKinf)

T . This combination
of tricks enables TinyMPC to leverage a compact cache
online and eliminate the need for online matrix factorization,
reducing computational complexity from cubic to quadratic,
and enabling its deployment onto computationally constrained
tiny robots for real-world dynamic robotic demonstrations.
Psuedocode for the final algorithm is shown in Figure 2.

Figure 3 illustrates the computational flow of TinyMPC,
where the orange path highlights the dominant floating-point
multiplication operations. The inherent sequential data depen-
dencies in this flow pose significant challenges for parallel
computation. The problem scale is characterized by three
parameters: the state dimension (n), control dimension (m),
and time horizon (N). Figure 4 reveals that the computational
bottleneck primarily occurs during the forward_pass and
backward_pass stages, which involve intensive matrix-
vector multiplications whose complexity scales quadratically
with problem size. This profiling confirms that optimizing
matrix-vector multiplication efficiency should be the central
focus of our hardware architecture design.

Another computational characteristic is the consistent spar-
sity patterns inside the various matrices, as demonstrated in
Figure 5. A detailed analysis of the formation of these sparsity
patterns for the system dynamics is provided in Section IV-B.
Building on prior work [24], [25], we leverage these structural
properties for further optimizations in our hardware design.

C. Architecture Design Challenges and Solutions

We identify three key challenges in designing efficient MPC
hardware accelerators and present our corresponding solutions:

(4,
4,1

0)

(4,
4,2

0)

(8,
8,1

0)

(4,
4,4

0)

(8,
8,2

0)

(16
,16

,10
)

(8,
8,4

0)

(16
,16

,20
)

(16
,16

,40
)

Problem Size (m, n, N)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

FL
OP

s p
er

 It
er

at
io

n

1e5

2,592 5,392 9,280 10,992
19,360

34,944 39,520

73,024

149,184Backward Pass
Forward Pass
Update Linear Cost
Update Slack
Update Dual

Fig. 4. Breakdown of FLOPs per iteration of various problem sizes

Fig. 5. Sparsity patterns of matrices that are used in TinyMPC computation.
Black squares represent non-zero values.

• Challenge 1: Scalability across problem sizes and
platforms. A fixed architecture with predetermined vec-
tor/matrix sizes cannot optimally adapt to varying control
system scales under different FPGA resource constraints.
Solution: We develop a parameterized architecture tem-
plate coupled with a coarse-grained instruction set. The
template supports flexible instantiation of function unit
widths and depths to match both problem dimensions
and platform resources. Our instruction set operates at
matrix/vector granularity, enabling computation flows to
remain portable across different hardware configurations.

• Challenge 2: Sequential data dependencies. The in-
herent sequential updates of state vectors (x, d, p) resist
straightforward data-level parallelization.
Solution: We exploit instruction-level parallelism through
HLS code orchestration. Our framework automatically
explores parallelization opportunities using the HLS com-
piler’s built-in scheduler on generated code, eliminating
manual architecture tuning.

• Challenge 3: System-specific sparsity utilization.
System dynamics matrices (A,B) exhibit application-
specific sparsity patterns that generic designs cannot
efficiently exploit.
Solution: Our compiler automatically generates HLS
code with hard-coded sparsity patterns, enabling the elim-
ination of redundant operations during synthesis while

3

TABLE I
INSTRUCTION SET OF TINYPROCESSOR

Type Example Description

Scalar fmul F0, F2, F3 scalar multiplication
Vector vmax V0, V1, V2, vlen element-wise variable saturation
GeMV gemv M0, V0, V1, vlen matrix-vector multiplication
Branch bne R0, R1, target branch instruction

maintaining the original problem structure.

III. PARAMETERIZED AND PROGRAMMABLE VECTOR
ARCHITECTURE

To begin to tackle these challenges, and in particular Chal-
lenge 1, we present a flexible processor architecture, illustrated
in Figure 6, that offers configurable hardware and software
components. On the software side, we provide a specialized
instruction set for developing assembly-level implementations
of MPC solver workflows. The hardware architecture employs
a parameterized template design that supports scalable par-
allelism through configurable vector and matrix processing
units. The coarse granularity of the designed instruction set
allows different hardware configurations to share the same
assembly description of the computation flow. This adaptable
framework ensures optimal implementation across different
target platforms with varying area constraints.

A. Instruction Set and Software

The proposed processor’s instruction set, detailed in Table I,
supports floating-point and integer scalar operations, floating-
point vector operations, matrix-vector multiplications, and
branch instructions. As demonstrated in Figure 7, through an
assembly segment of the TinyMPC algorithm, this implemen-
tation efficiently encodes MPC computations while retaining
the generality needed for other cached MPC workloads.

B. Parametrized Architecture Template

The core architectural template comprises three configurable
function units: a scalar processing unit, a vector processing
unit, and a dedicated GeMV (General Matrix-Vector multiply)
unit, with their parameterized structure detailed in Figure 6.
While the GeMV and vector units share computational prim-
itives including multiply-accumulate operations, their physi-
cal separation enables future investigation of mixed-precision
hardware implementations.

The proposed architecture template, coined as the
Parametrized and programmable Vector Architecture (PVA), is
instantiated using Vitis HLS to facilitate efficient exploration
of the design space. The memory subsystem configuration
is determined by two key parameters: vDepth controlling
the vector buffer capacity and mDepth governing the matrix
storage depth. To optimize memory bandwidth and computa-
tional throughput, the design employs a pre-loading strategy
for vector and matrix operands. The vector unit achieves
parallel processing of vWidth elements per cycle, while the
GeMV operation’s parallelism is determined by the multiply-
accumulate tree parameters MacTreeWidth and nMacTree.

IV. APPLICATION-DRIVEN FUSED ARCHITECTURE

The proposed PVA design can handle a variety of MPC
applications through software reprogramming. In real-world
applications, the variables in an MPC problem can be di-
vided into constant variables and time-varying variables. For
example, in a trajectory tracing task of a quadrotor, the A, B
matrices and trajectory are fixed, while x is time-varying.

As such, to begin to address our other core challenges, we
propose a fused design which offers key advantages for MPC
scenarios where the dynamic characteristic matrices are fixed
and computational workflows are static. First, it eliminates
the resource overhead of general-purpose processing units by
employing optimized dedicated hardware. Second, it removes
the instruction scheduling overhead entirely through static,
compile-time optimization of the fixed computation patterns.

A. Operation fusion

In programmable vector architectures, programs are typi-
cally compiled to binary code for execution on general-purpose
processors. To optimize problem-specific MPC solvers, we
leverage partial evaluation from compiler theory, generating
specialized HLS C code tailored to the static parameters
of the MPC problem. This specialized code is subsequently
synthesized into optimized hardware circuits on the FPGA
platform, eliminating runtime overhead for fixed computations.
This idea is described as Figure 8, as we can see, the
schedule in the fused design increases efficiency by breaking
the original ordering. Furthermore, the code snippet shown
in Figure 9 demonstrates such fused forward pass operations
(corresponding to Step 1 in Figure 3), consolidating what
would require 5 discrete instructions in the original non-fused
architecture. This fusion is enabled by partial evaluation of the
static computation graph structure.

B. Hardware Pruning by Constant Folding

The partial evaluation approach can be extended to enable
hardware pruning by leveraging matrix sparsity patterns. For
example, Equation 2 describes the dynamics of a 2D robot
and illustrates how physical laws induce sparsity. For this 2D
robot, directional motions are independent, yielding a block-
diagonal structure with zeros isolating each coordinate.

Discrete system:


xk+1 = xk +∆t vx,k

yk+1 = yk +∆t vy,k

vx,k+1 = vx,k +∆t ax

vy,k+1 = vy,k +∆t ay

⇒ A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B =


0 0
0 0
∆t 0
0 ∆t


(2)

Similarly, linearizing a quadrotor about a hover results in
sparse horizontal-vertical decoupling and diagonal rotational
actuation as shown in the A,B matrices in Figure 5. This
sparsity is universal in physics-based robot models—and is

4

MPC problem
(A, B, Q, R, m, n, N,

…)

Hardware platformsfmul F0, F1, FO
axpby F0, V0, F1, V1, VO, vlen
vmax V0, V1, vlen
gemm M0, V0, VO

VecBuf

vWidth

vDepth

F0V0F1V1

VO

MatBuf

mWidth

mDepthRegFile

F0F1

FO

Scalar Function Unit Vector Function Unit

+
× ×

+
× ×

+
nMacTree

MacTreeWidth

GeMV Function Unit

Instruction ROM & Issue Unit

Hardware Template: TinyProcessor<nMacTree, MacTreeWidth, vWidth, mDepth, vDepth>

Hardware
Template

Machine Code

Architectural Parameter
<1, 4, 4, 64, 512> TinyProcessor

Compile

Instantiate

Deploy

Fig. 6. The overall workflow to deploy an MPC problem onto our programmable vector architecture. In the figure, Red and blue lines denote the scalar and
vector data paths, respectively.

structural, not a numerical artifact—enabling design-time op-
timizations to improve computational efficiency. For example,
real-world actuators (thrust, torques) affect narrow subsets of
states, leaving most matrix entries zero.

In our current implementation, this optimization is achieved
through automatically generated HLS code that eliminates
operations involving zero-valued operands, as demonstrated
in Figure 10. This further address our challenges and leads to
a performant, and custom, hardware generation.

V. PERFORMANCE EVALUATION

This section presents a thorough evaluation of our hardware
solver, analyzing its computational speed, resource utilization,
power consumption, and end-to-end performance. The pro-
posed programmable vector architecture provides a scalable
solution for control problems of varying scales. We fur-
ther demonstrate performance improvements through problem-
specific optimizations in the fused computation engine.

A. Experimental Setup

Our evaluation platform is the Avnet Ultra96 development
board, equipped with a Zynq UltraScale+ MPSoC featuring
a quad-core ARM Cortex-A53 application processor, dual-
core Cortex-R5 real-time processors, and programmable logic
fabric. For microcontroller (MCU) benchmarks, we generate
executables using the codegen tool from the TinyMPC
Python package [21], which are then executed on the process-
ing system (PS). The hardware solver is implemented with
Vitis HLS 2021.2 and deployed to the programmable logic
(PL) section. Hardware specifications are provided in Table II.

li R1, 0
li R2, max_iter
main:

Set the arguments for forward pass
li R8, N
addi R8, -1, R8
li R9, BASE_x
li R10, BASE_u
li R11, BASE_d
jal RA, forward_pass
...
jal RA, update_slack
...
addi R1, 1, R1
bne R1, R2, main
halt

forward_pass:
li R4, 0
li R5, BASE_vtemp0
li R6, BASE_vtemp1

forward_pass_loop:
vTemp0 = Kinf * x
gemv BASE_Kinf, R9, R5, nx, nx
u = -Kinf * x - d
axpby minus_one, R5, minus_one, R11, R10, nu
vTemp0 = A * x
gemv BASE_A, R9, R5, nx, nx
vTemp1 = B * u
gemv BASE_B, R10, R6, nx, nu
x = A * x + B * u
...
bne R4, R8, forward_pass_loop
jr RA

Fig. 7. The assembly code implementation of TinyMPC.

B. Performance Evaluation of PVA

We first assess the PVA performance in solving MPC
problems across different scales. The processor we used
has the following architectural parameters: (vDepth=1024,
vWidth=32, MacTreeWidth=8, nMacTree=4, mDepth=1024).

5

axpby

GeMV
U[0]=A[0][0]*x[0]

U[0]=u[0]*0.1 U[1]=u[1]*0.1

U[0]+=A[0][1]*x[1]

U[0]=A[0][0]*x[0] U[1]=A[1][1]*x[1]

U[0]=u[0]*0.1 U[1]=u[1]*0.1

U[1]=A[1][0]*x[0] U[1]+=A[1][1]*x[1]
inst 0

inst 1

fused

Sparsity-aware
operation fusion

Mat A Vec x Vec u Vec u

× ×0.1
example compute flow:

Fig. 8. A graphical comparison showing the differences between instruction-
based execution and fused operations.

// --- Forward Pass ---
FWD_PASS_LOOP: for (int k = 0; k < 9; ++k) {
#pragma HLS PIPELINE

U(k, 0) = -(Kinf_const[0][0] * X(k, 0) +
Kinf_const[0][1] * X(k, 1) +
Kinf_const[0][2] * X(k, 2) +
Kinf_const[0][3] * X(k, 3)) - D(k, 0);

U(k, 1) = -(Kinf_const[1][0] * X(k, 0) +
Kinf_const[1][1] * X(k, 1) +
Kinf_const[1][2] * X(k, 2) +
Kinf_const[1][3] * X(k, 3)) - D(k, 1);

X(k+1, 0) = (A_const[0][0] * X(k, 0) +
A_const[0][1] * X(k, 1) +
A_const[0][2] * X(k, 2) +
A_const[0][3] * X(k, 3)) +
(B_const[0][0] * U(k, 0) +
B_const[0][1] * U(k, 1));

X(k+1, 1) = (A_const[1][0] * X(k, 0) +
A_const[1][1] * X(k, 1) +
A_const[1][2] * X(k, 2) +
A_const[1][3] * X(k, 3)) +
(B_const[1][0] * U(k, 0) +
B_const[1][1] * U(k, 1));

/* ... */
}

Fig. 9. Optimized forward pass implementation with fused operations.

FPGA resource costs of implementing this processor are
shown in Table III. The evaluation employs three test series
that systematically vary one problem dimension (m, n, or N)
while fixing the other two parameters.

With a fixed maximum iteration count of 10,000, we
measure the computation time per iteration for each config-
uration. The test data is randomly generated. As shown in
Figure 11, the PVA demonstrates consistent speedups over
the software baseline across all test cases. The measured
performance improvements range from 1.46× (minimum) to
2.70× (maximum), with an average speedup of 2.61×.

C. Performance Evaluation of the Fusion Engine

To evaluate our application-specific design methodology
(Section IV), we conduct ablation studies on two trajectory-
tracking applications: 2D robot and quadrotor with planning
horizons of 10 and 30. The breakdown of total computation

// --- Forward Pass ---
FWD_PASS_LOOP: for (int k = 0; k < 9; ++k) {

#pragma HLS PIPELINE
U(k, 0) = -(2.110300282111507f * X(k, 0)

+ 2.417446239653999f * X(k, 2)) -
D(k, 0);

U(k, 1) = -(2.110300282111507f * X(k, 1)
+ 2.417446239653999f * X(k, 3)) -
D(k, 1);

X(k+1, 0) = (1.0f * X(k, 0) + 0.1f * X(k,
2));

X(k+1, 1) = (1.0f * X(k, 1) + 0.1f * X(k,
3));

X(k+1, 2) = (1.0f * X(k, 2)) + (0.1f *
U(k, 0));

X(k+1, 3) = (1.0f * X(k, 3)) + (0.1f *
U(k, 1));

}

Fig. 10. Optimized forward pass implementation with sparsity pattern-aware
constant folding.

TABLE II
ULTRA96 KEY HARDWARE SPECIFICATIONS

PL PS

LUTs FFs DSPs BRAMs Processor Memory

70,560 141,120 360 216 4× Cortex-A53
@1.5GHz 2GB DDR4

is shown in Figure 12, showing that the pruning technique
mentioned in IV-B significantly reduces the amount of FLOPs.

The resource costs of each fused engine are listed in
Table III, which shows that the fused engine not only pro-
vides control rate improvements but also significantly reduces
the hardware resource usage. Key findings demonstrate pro-
gressive performance gains: The baseline PVA architecture
matches software solution performance with a 0.97× speedup.
Building on this foundation, operation fusion achieves a 3.05×
speedup through compile-time operation fusion as detailed in
Section IV. Further enhancing performance, sparsity exploita-
tion yields an additional 1.79× speedup by leveraging physics-
induced structural sparsity patterns shown in Fig. 5.

The combined optimizations deliver 5.46× total speedup
versus software baseline. In the Quadrotor-N30 task, the
fused engine delivers 9.73× speedup. This demonstrates: (1)
specialized hardware eliminates scheduling overhead, (2) static
computation patterns enable deep optimization, and (3) physi-
cal sparsity (Fig. 5) substantially reduces complexity (Fig. 12).

D. Power & Energy Efficiency

We measured both static and dynamic power consumption
across all solver systems. The power is measured by the
on-board PMBus sensors on the Ultra96. Static power was
measured while the solver remained idle, whereas dynamic
power was calculated as the difference between active solver
execution and idle power states. Our results demonstrate that
while the static power consumption of MCU and PVA archi-
tectures is comparable, the PVA exhibits a 53.27 % reduction
in dynamic power compared to the MCU implementation.

6

4 8 12 16 30 40 50
N

0

200

400

600

800

1000

1200

1400

Ex
ec

ut
io

n
Ti

m
e

Pe
r I

te
ra

tio
n

(
s)

Varying N with fixed m=32 and n=32

MCU
TinyProcessor
Speedup

4 8 12 16 20 24 28 32
m

0

200

400

600

800

1000

1200

1400

Varying n with fixed N=50 and m=32

MCU
TinyProcessor
Speedup

4 8 12 16 20 24 28 32
n

0

200

400

600

800

1000

1200

1400

Varying m with fixed N=50 and n=32

MCU
TinyProcessor
Speedup

3.1

3.2

3.3

3.4

3.5

3.6

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Sp
ee

du
p

Fig. 11. Scalability of programmable vector architecture. In (a), the state m and control m dimension are held constant with horizon N varying from 4 to
50. In (b), the N and m are held constant with m varying from 4 to 32. In (c), the N and n are held constant with n varying from 4 to 32.

TABLE III
RESOURCE UTILIZATION COMPARISON

Arch.
LUTs FFs DSPs BRAMs

Used % Used % Used % Used %

PVA 44.7k 43.4 38.7k 27.4 232 64.4 67 31.0
2D-N10 10.6k 15.0 12.9k 9.1 40 11.1 9 4.2
2D-N30 10.8k 15.4 13.0k 9.2 40 11.1 9 4.2
Q-N10 25.7k 36.4 25.2k 17.9 104 28.9 9 4.2
Q-N30 26.0k 36.9 25.3k 17.9 104 28.9 9 4.2

TABLE IV
POWER CONSUMPTION AND ENERGY EFFICIENCY COMPARISON

BETWEEN ARCHITECTURES

Static (mW) Dynamic (mW)

MCU 597 122
PVA 593 57

2D-N10 250 30
2D-N30 250 59
Q-N10 416 28
Q-N30 416 56

The fused architecture demonstrates significant improvements
in both static and dynamic power consumption compared to
conventional MCU and PVA solutions, while simultaneously
achieving higher computational throughput. As demonstrated
in the Quadrotor-N30 benchmark, the fused implementation
achieves a 54.10 % power reduction while maintaining a 9.73×
speedup over the MCU solution.

E. End-to-end Performance Evaluation

To assess the performance of our hardware implementation,
we conducted comparative trajectory tracking experiments
using both software and hardware-based MPC solvers. The
baseline software implementation employs a prediction hori-
zon of N = 10, while our hardware implementations feature
three configurations with horizons of N = 10, N = 20, and
N = 30. The control frequency is calculated as Freq =
0.5× 1

tsolution
, where the scaling factor of 0.5 ensures adequate

time margin for both computation and actuation. The software

2D Robot N=10
(Dense|Sparse)

Quadrotor N=10
(Dense|Sparse)

2D Robot N=30
(Dense|Sparse)

Quadrotor N=30
(Dense|Sparse)

Problem Configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FL
OP

s p
er

 It
er

at
io

n

1e4

1,674 1,140

10,344

3,272
5,234

3,540

32,424

10,072

Backward Pass
Forward Pass
Update Linear Cost
Update Slack
Update Dual

Fig. 12. Breakdown of total FLOPs in dense computation and sparse-aware
computation.

2D Robot
N=10

2D Robot
N=30

Quadrotor
N=10

Quadrotor
N=30

Problem Configuration

0

20

40

60

80

100

120

Ti
m

e
pe

r I
te

ra
tio

n
(

s)

13.0

40.0
35.0

110.0

19.1

50.6

28.7

82.3

5.5

15.5
9.4

28.6

4.0

12.9

3.8
11.3

SW (TinyMPC)
PVA
Fused
Sparse-aware

Fig. 13. Comparison of solution time per iteration (the lower the better) under
different hardware configurations.

solver achieves a control frequency of 142 Hz, while the
hardware implementations attain frequencies of 205 Hz, 174
Hz, and 137 Hz for horizons 10, 20 and 30, respectively.

In our experiments, we simulated the quadrotor’s spiral
trajectory while incorporating random noise to better approxi-
mate real-world conditions. As shown in Figure 14, the results
demonstrate that our hardware solver successfully enables
MPC operation with both extended planning horizons and im-

7

10 20 30
Planning Horizon N

100

120

140

160

180

200

220

240
Co

nt
ro

l F
re

qu
en

cy
 (H

z)
(a) Configuration Space

SW: RMSE=208mm
HW1: RMSE=206mm
HW2: RMSE=166mm
HW3: RMSE=154mm

0.5 0.0 0.5 1.0
X (m)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Y
(m

)

(b) Trajectory Comparison (XY)

Reference
Best: HW3
Middle: HW1
Worst: SW

0 2 4 6 8
Time (s)

50

100

150

200

250

300

350

Po
sit

io
n

Er
ro

r (
m

m
)

(c) Tracking Error Evolution

Best: 154mm
Middle: 206mm
Worst: 208mm

Fig. 14. An end-to-end performance comparison in spiral trajectory tracing task between hardware and software solver.

proved control frequencies – two critical factors for enhanced
control performance. This improvement is reflected in the
reduction of tracking error from 208 mm to 154 mm. With the
aid of a hardware accelerator, we can support longer planning
horizons and higher control frequencies, which ultimately
improves the control performance.

VI. CONCLUSION AND FUTURE WORK

In this work, we present two key design approaches inte-
grated into a comprehensive framework for implementing em-
bedded MPC solvers on FPGA platforms: (1) a programmable
vector architecture offering runtime flexibility, and (2) an
application-driven fused engine optimized for specific models.
The programmable vector architecture provides rapid adapt-
ability to new problem instances through its reconfigurable
datapath, while the fused engine achieves superior perfor-
mance through model-specific hardware customization.

Our evaluation demonstrates substantial improvements
over conventional microcontroller implementations. The PVA
achieves a 2.61× speedup with a 53.27 % power reduction,
while the fused engine delivers more aggressive optimization
with a 9.72× acceleration and a 54.10 % power savings for
quadrotor control applications. Furthermore, through an end-
to-end trajectory tracking case study, we empirically validate
that our hardware-accelerated solver enhances closed-loop
control performance.

In future work, we hope to expand our framework to encom-
pass and evaluate additional (cached) edge MPC algorithms
(e.g., [3]) and to deploy our designs onto physical robots.

REFERENCES

[1] D. Arnström, A. Bemporad, and D. Axehill, “A Dual Active-Set Solver
for Embedded Quadratic Programming Using Recursive LDLT Up-
dates,” IEEE Transactions on Automatic Control, vol. 67, no. 8, pp.
4362–4369, Aug. 2022.

[2] J. T. Betts, Practical Methods for Optimal Control Using Nonlinear
Programming, ser. Advances in Design and Control. Society for
Industrial and Applied Mathematics (SIAM), 2001, vol. 3.

[3] A. L. Bishop, J. Z. Zhang, S. Gurumurthy, K. Tracy, and Z. Manch-
ester, “ReLU-QP: A GPU-accelerated quadratic programming solver for
model-predictive control,” in 2024 IEEE International Conference on
Robotics and Automation (ICRA). Yokohama, JP: IEEE, 2024, pp.
13 285–13 292.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[5] F. Dong, X. Li, K. You, and S. Song, “Standoff tracking using dnn-
based mpc with implementation on fpga,” IEEE Transactions on Control
Systems Technology, vol. 31, no. 5, pp. 1998–2010, 2023.

[6] U. Eren, A. Prach, B. B. Koçer, S. V. Raković, E. Kayacan, and
B. Açıkmeşe, “Model predictive control in aerospace systems: Current
state and opportunities,” Journal of Guidance, Control, and Dynamics,
vol. 40, no. 7, pp. 1541–1566, 2017.

[7] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–348,
1989.

[8] S. Gerkšič and B. Pregelj, “Finite-word-length FPGA implementation of
model predictive control for ITER resistive wall mode control,” Fusion
Engineering and Design, vol. 169, p. 112480, Aug. 2021.

[9] E. N. Hartley, J. L. Jerez, A. Suardi, J. M. Maciejowski, E. C. Kerrigan,
and G. A. Constantinides, “Predictive control using an FPGA with
application to aircraft control,” IEEE Transactions on Control Systems
Technology, vol. 22, no. 3, pp. 1006–1017, 2013.

[10] M. He and K. V. Ling, “Model Predictive Control on a Chip,” in
2005 International Conference on Control and Automation (ICCA).
Budapest, Hungary: IEEE, 2005, pp. 528–532.

[11] M. Jeong, M. Schoen, and J. Biela, “When FPGAs Meet ADMM
with High-level Synthesis (HLS): A Real-time Implementation of Long-
horizon MPC for Power Electronic Systems,” in 2023 11th International
Conference on Power Electronics and ECCE Asia (ICPE 2023 - ECCE
Asia), Jeju Island, Korea, Republic of Korea, May 2023, pp. 1704–1711.

[12] J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan, “FPGA Implemen-
tation of an Interior Point Solver for Linear Model Predictive Control,”
in 2010 International Conference on Field-Programmable Technology
(FPT). Beijing, CHina: IEEE, 2010, pp. 316–319.

[13] J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan, “An FPGA Imple-
mentation of a Sparse Quadratic Programming Solver for Constrained
Predictive Control,” in Proceedings of the 19th ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays. Monterey,
CA: ACM, 2011, pp. 209–218.

[14] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan,
and M. Morari, “Embedded Online Optimization for Model Predictive
Control at Megahertz Rates,” IEEE Transactions on Automatic Control,
vol. 59, no. 12, pp. 3238–3251, 2014.

[15] G. Knagge, A. Wills, A. Mills, and B. Ninness, “ASIC and FPGA
implementation strategies for Model Predictive Control,” in Proceedings
of the 2009 European Control Conference (ECC). Budapest, Hungary:
IEEE, 2009, pp. 144–149.

[16] S. Kuindersma, “Taskable agility: Making useful dynamic behavior
easier to create,” Princeton Robotics Seminar, 4 2023.

[17] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley
& Sons, 2012.

[18] Y. Li, S. E. Li, X. Jia, S. Zeng, and Y. Wang, “FPGA accelerated model
predictive control for autonomous driving,” Journal of Intelligent and
Connected Vehicles, vol. 5, no. 2, pp. 63–71, Jan. 2022.

8

[19] J. Liu, H. Peyrl, A. Burg, and G. A. Constantinides, “FPGA imple-
mentation of an interior point method for high-speed model predictive
control,” in 2014 24th International Conference on Field Programmable
Logic and Applications (FPL). Montreal, QC, Canada: IEEE, 2014,
pp. 1–8.

[20] S. Lucia, D. Navarro, B. Karg, H. Sarnago, and Ó. Lucı́a, “Deep
Learning-Based Model Predictive Control for Resonant Power Convert-
ers,” IEEE Transactions on Industrial Informatics, vol. 17, no. 1, pp.
409–420, Jan. 2021.

[21] I. Mahajan, K. Nguyen, S. Schoedel, E. Nedumaran, M. Mata,
B. Plancher, and Z. Manchester, “Code generation and conic constraints
for model-predictive control on microcontrollers with conic-tinympc,”
2025.

[22] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, pp. 1–27,
2012.

[23] I. McInerney, G. A. Constantinides, and E. C. Kerrigan, “A Survey of
the Implementation of Linear Model Predictive Control on FPGAs,”
IFAC-PapersOnLine, vol. 51, no. 20, pp. 381–387, 2018.

[24] S. M. Neuman, R. Ghosal, T. Bourgeat, B. Plancher, and V. J. Reddi,
“Roboshape: Using topology patterns to scalably and flexibly deploy
accelerators across robots,” in Proceedings of the 50th Annual Inter-
national Symposium on Computer Architecture. Orlando, FL, USA:
ACM, 2023, pp. 1–13.

[25] S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas,
and V. J. Reddi, “Robomorphic computing: a design methodology for
domain-specific accelerators parameterized by robot morphology,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Virtual
USA, 2021, pp. 674–686.

[26] K. Nguyen, S. Schoedel, A. Alavill, B. Plancher, and Z. Manch-
ester, “TinyMPC: Model-Predictive Control on Resource-Constrained

Microcontrollers,” in IEEE International Conference on Robotics and
Automation (ICRA). Yokohama, Japan: IEEE, May 2024.

[27] H. Peyrl, A. Zanarini, T. Besselmann, J. Liu, and M. A. Boéchat,
“Parallel implementations of the fast gradient method for high-speed
MPC,” Control Engineering Practice, vol. 33, pp. 22–34, 2014.

[28] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control engineering practice, vol. 11, no. 7, pp.
733–764, 2003.

[29] Y. Shi and K. Zhang, “Advanced model predictive control framework
for autonomous intelligent mechatronic systems: A tutorial overview and
perspectives,” Annual Reviews in Control, vol. 52, pp. 170–196, 2021.

[30] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[31] Q. Sui, B. Du, Y. Zuo, and W. Martinez, “Exploring the Potential of
FPGA in High-Frequency Switching DC-DC Boost Converters Using
Model Predictive Control,” in 2025 IEEE Applied Power Electronics
Conference and Exposition (APEC). Atlanta, GA, USA: IEEE, Mar.
2025, pp. 2752–2756.

[32] S. Vazquez, J. I. Leon, L. G. Franquelo, J. Rodriguez, H. A. Young,
A. Marquez, and P. Zanchetta, “Model predictive control: A review of its
applications in power electronics,” IEEE industrial electronics magazine,
vol. 8, no. 1, pp. 16–31, 2014.

[33] P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. D.
Prete, “Optimization-based control for dynamic legged robots,” IEEE
Transactions on Robotics, vol. 40, pp. 43–63, 2024.

[34] A. G. Wills, G. Knagge, and B. Ninness, “Fast Linear Model Predictive
Control Via Custom Integrated Circuit Architecture,” IEEE Transactions
on Control Systems Technology, vol. 20, no. 1, pp. 59–71, 2012.

[35] Y. Xu, D. Li, Y. Xi, J. Lan, and T. Jiang, “An Improved Predictive Con-
troller on the FPGA by Hardware Matrix Inversion,” IEEE Transactions
on Industrial Electronics, vol. 65, no. 9, pp. 7395–7405, 2018.

9

	Introduction
	Background
	Related Work
	The Computation Flow of TinyMPC
	Architecture Design Challenges and Solutions

	Parameterized and Programmable Vector Architecture
	Instruction Set and Software
	Parametrized Architecture Template

	Application-driven Fused Architecture
	Operation fusion
	Hardware Pruning by Constant Folding

	Performance Evaluation
	Experimental Setup
	Performance Evaluation of PVA
	Performance Evaluation of the Fusion Engine
	Power & Energy Efficiency
	End-to-end Performance Evaluation

	Conclusion and Future Work
	References

