
A High-level Synthesis Toolchain for the Julia Language
Benedict Short

Imperial College London
London, UK

Ian McInerney
i.mcinerney17@imperial.ac.uk

Imperial College London
London, UK

John Wickerson
j.wickerson@imperial.ac.uk
Imperial College London

London, UK

The Problem
A key factor in the slow adoption of application-specific hardware
designs is the so-called “two-language problem,” where scientific
algorithms are usually prototyped and developed in high-level lan-
guages, but then must be translated into lower-level languages
(such as RTL for FPGA designs). This leads to extra development ef-
fort, since two implementations generally need to be developed and
maintained concurrently, and different teams might be responsible
for the two layers.

Solving the two-language problem would mean taking the high-
level implementation, written by the domain scientist/engineer,
and directly compiling it into a hardware accelerator using High-
Level Synthesis (HLS) tools. Most existing HLS tools consume a
C/C++-like “high-level” language and are based on compiler stacks
developed for compiling and optimizing a stream of sequential
operations, such as the LLVM framework. While there has been
success deploying HLS in fields such as video processing, graph
processing and genomics, this traditional framework is not ideal for
FPGA designs, and can lead to HLS-generated designs performing
suboptimally and also non-portable source code [2].

One reason for this is a lack of high-level data about the design
being available to the HLS compiler when using compiler stacks
designed for sequential C/C++. The designer can hint at this missing
information by adding pragmas, but those are generally toolchain-
specific and non-portable.

Our contribution
We propose to overcome this lack of information by starting from
a higher-level language than C/C++, and by raising the level of
abstraction in the compiler toolchain’s IR.

To this end, we present an open-source and permissively li-
censed toolchain that compiles Julia,1 a language built for science
and mathematics that includes native support for common math
operations/concepts (e.g., linear algebra), into SystemVerilog by
going through MLIR using the CIRCT framework.2

Using Julia as the source language for HLS was first advocated by
Biggs et al. [1], who presented several advantageous features. For
instance, Julia integrates mathematical concepts such as linear alge-
bra as first-class language features; these can be optimised directly
by the compiler, without the need to reconstruct them. Moreover,
its package ecosystem contains many ‘pure Julia’ packages, which
1https://julialang.org/
2https://github.com/llvm/circt

This work is licensed under a Creative Commons Attribution 4.0 International License.
FPGA ’26, Seaside, CA, USA
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2079-6/2026/02
https://doi.org/10.1145/3748173.3779564

instead of simply providing a thin wrapper on top of a Fortran or
C library, actually implement the algorithms in Julia. This makes
it possible to simulate custom numerics formats inside existing
algorithms, and could also allow for accelerator cores to be created
by just using the algorithms in existing packages.

Our toolchain — called JuliaHLS — has advanced analyses and
optimisations, such as operator fusion for linear algebra or tiling,
that were not previously possible without fragile ‘lifting passes’
or programmer-annotated compiler directives. We also leverage
unique features of the Julia compiler infrastructure to build this
tool, including the AbstractInterpreter interface and method ta-
ble overlays. The AbstractInterpreter interface allows for us to
create a new MLIRInterpreter compiler flow that operates along-
side the standard Julia compiler while reusing many parts from it
(e.g., AST lowering, type analysis, optimisation passes, etc.) without
relying on internals of the Julia compiler stack.

JuliaHLS is able to generate high-performance designs that cor-
rectly pass timing analysis at 100MHz and achieve up to 82.6% of
the throughput of Dynamatic v2.0 [3]. Additionally, in our testing,
our toolchain was able to correctly compile several programs that
Dynamatic was unable to, and was able to produce designs capable
of running at higher clock frequencies.

JuliaHLS can already generate functionally correct hardware
from a significant subset of Julia, but it does remain an early-stage
toolchain and requires substantial development to achieve perfor-
mance competitive with hand-written RTL and mature HLS tools.
Our plans for future work involve making improvements within
Julia’s compiler infrastructure, advancing CIRCT’s HLS capabili-
ties, and enabling JuliaHLS-generated accelerators to be not just
designed in Julia, but used from Julia too.

For more information about the JuliaHLS project, please see
our full paper on arXiv [4] and our organisation on Github:

https://github.com/JuliaHLS

References
[1] Benjamin Biggs, Ian McInerney, Eric C. Kerrigan, and George A. Constantinides.

2022. High-Level Synthesis Using the Julia Language. In Proceedings of the 2nd
Workshop on Languages, Tools, and Techniques for Accelerator Design (LATTE’22).
arXiv:2201.11522

[2] Jason Cong, Jason Lau, Gai Liu, Stephen Neuendorffer, Peichen Pan, Kees Vissers,
and Zhiru Zhang. 2022. FPGA HLS Today: Successes, Challenges, and Opportu-
nities. ACM Transactions on Reconfigurable Technology and Systems 15, 4 (2022).
doi:10.1145/3530775

[3] Lana Josipovic, Andrea Guerrieri, and Paolo Ienne. 2022. From C/C++ Code
to High-Performance Dataflow Circuits. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 41, 7 (2022). doi:10.1109/TCAD.2021.3105574

[4] Benedict Short, Ian McInerney, and John Wickerson. 2025. A High-level Synthesis
Toolchain for the Julia Language. arXiv:2512.15679 [cs.SE] https://arxiv.org/abs/
2512.15679

https://orcid.org/0009-0009-9588-143X
https://orcid.org/0000-0003-2616-9771
https://orcid.org/0000-0001-6735-5533
https://julialang.org/
https://github.com/llvm/circt
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3748173.3779564
https://github.com/JuliaHLS
https://arxiv.org/abs/2201.11522
https://doi.org/10.1145/3530775
https://doi.org/10.1109/TCAD.2021.3105574
https://arxiv.org/abs/2512.15679
https://arxiv.org/abs/2512.15679
https://arxiv.org/abs/2512.15679

	References

