
Hardware.jl – An MLIR-based Julia HLS Flow
Benedict Short, Ian McInerney, John Wickerson

1

Imperial College London



Motivation

2



The Engineer’s Workflow
• Most electrical, mechanical and aeronautical engineers follow a systematic 

workflow:

Characterise 
Problem

Prototype 
Algorithm 

(Sim)

Implement 
Algorithm

Test Algorithm 
(Hardware)

Meets 
Requirements?

Development Bottleneck
(2-language/person problem)

• The bottleneck is becoming more problematic as algorithms grow in complexity
• e.g. Real-time control systems in electric motors offload algorithms to FPGAs 

and ASICs
3



Why are the current solutions insufficient?

Existing tools fall into one of two categories:

1. Traditional tools, e.g. Vitis: 
• Abstraction level too low for engineers
• Doesn’t eliminate the two-language problem

2. High-level alternatives:
• MATLAB HLS: slow, unoptimized designs
• Julia HLS tools: limited functionality/optimisations, rely on deprecated 

toolchains with fragile infrastructure

4



Why use Julia for design-entry?

• Popular within the scientific computing community
• Maths friendly
• Dynamically Typed
• Open Source

• Has a ‘Pure Julia’ ecosystem – easy to synthesise!
• Packages like SciML would allow us to synthesise ODE solvers and optimisation 

algorithms directly into accelerators

• HLS friendly:
• Native support for high-level abstract types, e.g. AbstractArray
• Extract intrinsics directly to preserving high-level information, e.g. inherent 

parallelism during matrix operations

5



Our Solution: Hardware.jl

6



High-Level Aims & Overview

• Directly synthesise hardware from pure Julia source code
• Facilitate quick end-to-end accelerator design
• Reusable and easy to maintain (key priority)
• Take advantage of Julia’s extensibility

7



Why use MLIR?

• Dialects capture high-level semantics directly
• Avoid emulation and premature lowering!
• e.g. map AbstractArrays to ML dialects for first-class linear algebra support 

• Allows for innovation at new levels of abstraction
• Don’t reinvent the wheel
• Inherit powerful analyses and robust infrastructure

• Stable IR
• Julia actively upgrades LLVM, but existing HLS tools (e.g. AMD Vitis) are built on 

old versions
• MLIR is significantly more stable between versions, making the tool easier to 

maintain

8



How do we extract program information?

• Two main types of program information to extract:
1. Low-level SSA-type IR designed to run on a fetch-execute processor 

(emulation)
2. High-level intrinsics for hardware specific optimisations (e.g. matrices)

9



How do we generate Hardware from MLIR?

• CIRCT library:
• Keeps the pipeline in MLIR
• Permissively licensed and open-source
• Abstracts away difficult problems that have been solved, e.g. generating 

valid Verilog for different EDA tools

• Custom HLS Backend:
• Currently written in C++, long-term goal to move the tool to Julia
• Chains together passes to lower into Verilog
• Different lowering routes to generate different types of hardware

10



But Julia is Dynamically Typed...

• Julia implements advanced type-inference passes that aim to 
maximise type-stability to improve run-time performance
• Re-use Julia’s robust and performant infrastructure
• e.g. Union splitting turns dynamic dispatch into static dispatch

• We place restrictions on the source code, in line with those from the 
JuliaC AOT Compiler
• Anticipate that users will have evaluated the feasibility of the AOT compiler 

beforehand

• Enforce static typing on an IR Code level
• Avoids exponentially increasing designs

11



Evaluation and Long-Term Vision

12



Metrics and Benchmarks

• Metrics:
• Resource usage (design efficiency)
• Design Latency 
• ‘Synthesisability’ of arbitrary programs

• Benchmarks:
• Evaluate on an AMD Xilinx platform
• Evaluate against existing HLS tools, the AOT and JIT Julia Compiler
• Linear algebra/mathematical programs (e.g. PID controller)

13



Short- & Long-term Goals:
Short-Term:

Front end:
• Standard Control-Flow
• Floating Point and Integer Operations
• Matrix Operations

Back end:
• Matrix Operations via TOSA and scalability
• Support for Fixed Point operations
• Dynamic vs Static Scheduling

Long-Term:

• Implement the Back End in Julia and 
leverage access to numerical libraries

• Co-simulation against a Julia model
• Automatically generate Bindings for 

Compiled Julia (full black-box 
accelerator design)

14


	Slide 1: Hardware.jl – An MLIR-based Julia HLS Flow
	Slide 2: Motivation
	Slide 3: The Engineer’s Workflow
	Slide 4: Why are the current solutions insufficient?
	Slide 5: Why use Julia for design-entry?
	Slide 6: Our Solution: Hardware.jl
	Slide 7: High-Level Aims & Overview
	Slide 8: Why use MLIR?
	Slide 9: How do we extract program information?
	Slide 10: How do we generate Hardware from MLIR?
	Slide 11: But Julia is Dynamically Typed...
	Slide 12: Evaluation and Long-Term Vision
	Slide 13: Metrics and Benchmarks
	Slide 14: Short- & Long-term Goals:

